Cookies help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
http://www.overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please leave this website now. Many thanks for your understanding.
Amazon Warehouse Deals ! Now even more Deep Discounts ! Check out these great prices on slightly used or just opened once only items.I always buy my gadgets via these great Warehouse deals ! Highly recommended ! Many thanks for supporting OverUnity.com this way.

New Book

Statistics

• Total Members: 81921
• Latest: asithaya

• Total Posts: 490665
• Total Topics: 14439
• Online Today: 44
• Most Online: 103
(December 19, 2006, 11:27:19 PM)
• Users: 6
• Guests: 235
• Total: 241

Author Topic: Multiphase Resonant Circuits  (Read 1026 times)

sourcecharge

• Newbie
• Posts: 10
Multiphase Resonant Circuits
« on: August 29, 2017, 08:22:59 AM »
Hi all,

I am working on >20 phase resonant circuits....
The reason is because there seems to be a discrepancy between b2spice and reality...
Think of it this way....
It two "phases" of a separate LC series resonant circuits that are in phase, are rectified from the output from a 100% (or close) square wave input, the output is twice as much....this corresponds to a ratio of the dissipation of the load to be 2.....very easy....
There is a second ratio that shows the number of phases to the actual output, and in this case, 1
But if there are multiple phases, like 5, and they are spread out evenly, than the ratio is not 2 but a lower number....(1.4)...from spice on both points...
The second ratio is <0.25
If there are 10 phases, spread out evenly, than the ratio is 2.4, and not 2.8....which would give OU......and the second ratio is <0.25...
But lets say the number of phases are infinite....
Then the phases would be soo close that the wave forms would almost overlap, so in real world settings...this would be like almost 2 phases that are in phase....another words the second ration would be 1...
Therefore I would get OU....
Here's the catch...20 phases is what I'm shooting for.....20 MPP cores (2inch 60u) all wound with about 250 Q measured (960 N), and about 120 Q under load....I have 1 made, but they are a pain in the ass to make....I even made a mold to section wind these things with my 3d printer using 28 awp polyimide wire...
It takes about 4 to 5 hours to make each of them and I am too lazy to make any more especially after I found the Q under load at 120 instead of 250 as calculation and test measurement showed....
IDK it might be the resistance of the dielectric of the coils (parasitic capacitance)

Anyways...If this works, i will be able to make coils that will work for any load due to the equations that I have found/made and are using today...

Free Energy | searching for free energy and discussing free energy

Multiphase Resonant Circuits
« on: August 29, 2017, 08:22:59 AM »

gotoluc

• Moderator
• Hero Member
• Posts: 2835
Re: Multiphase Resonant Circuits
« Reply #1 on: August 30, 2017, 03:54:01 PM »
Hi sourcecharge

Interesting ideal and I hope you will continue to build and test as it's rare to find researchers who actually build a test device let alone build and test someone else idea.

Looking forward to more and thanks for sharing

Luc

Free Energy | searching for free energy and discussing free energy

Re: Multiphase Resonant Circuits
« Reply #1 on: August 30, 2017, 03:54:01 PM »

Get the best HHO cell builder DVD plus great manual from FreeFromFuel.comGet the best HHO cell builder DVD plus great manual from FreeFromFuel.com

sourcecharge

• Newbie
• Posts: 10
Re: Multiphase Resonant Circuits
« Reply #2 on: August 30, 2017, 06:02:03 PM »
Hi sourcecharge

Interesting ideal and I hope you will continue to build and test as it's rare to find researchers who actually build a test device let alone build and test someone else idea.

Looking forward to more and thanks for sharing

Luc
Thx
My research started with the assumption that b2spice was a "control"....
Using B2spice I have found the following equation regarding a series LC resonant circuit with an output measurement across the capacitor to ground:

Vp(out) = Vp(in) / (nkFCR)
n = the polarity number, 2 for AC positive and negative, and 4 or either positive or negative
k = wave form number, pi for sinusoidal input wave forms, and pi^2/4 for a 100% duty factor AC square wave
F = frequency (hz)
C = Capacitance (F)
R = total series resistance of the series resonant circuit, Including, ESR(cap), and of the coil, R(dc), R(ac), R(di), R(core)...not to mention the dc resistance of the mosfets and the connecting wire...
I actually have data points from B2spice giving the k factor at duty factors from 35% to 100% non grounded open square wave inputs
I also have the data points from B2spice giving the Power factor at duty factors from 35% to 100% non grounded open square wave inputs
80% PF b2spice at 100% duty factor, and 77% PF observed at 100% duty factor...
These data points allowed regression of the k factor and the calculation of the current at different duty factors using a square wave inputs...
Basically, I can engineer any output voltage using series resonant circuits with a required current for a load...
Now back to the "ratio"
The series resistance of the series LC resonant circuit is affected by a load that is across the capacitor to ground...as this is a parallel resistance it needs to be converted to series...usually this load output voltage peak can be reliably calculated at about 20% dissipation, any higher the equations fall apart..
When the resistance is calculated to a series resistance, it basically has a 1/x ratio when dealing with multiphase resonant circuits, that is what the first ratio is about...so the higher the number, the less the series resistance....which yields higher voltage output....
so if you reread the above, the idea is that after about 5 phases, the second ratio (the number of phases vs the first ratio) is always less than 25% or 0.25....but in a circuit with an infinite number of phases feeding the same load by rectification, the wave forms would realistically overlap as in the case of two series LC resonant circuits that are feeding the same load by rectification....therefore the second ratio, would increase towards 1....

Soo its been about 6 or 7 years since i had this idea, (been working alot and paying down debt) and I've never actually found a way to wind 20 cores all the same with high enough Qs to actually matter duing that time....

Multiphase equations show that coils with Qs of >250 would actually have overly efficient output even if the second ratio was still <0.25 but by only 1%, but enough to make the effort....this of course is assuming the dissipation factor of the capacitors are <0.002, the ones I got are 0.001 or less

So finally I bought a 3d printer that allowed me to make a "sectional mold"  24 sections of pie like C molds that are screwed together so that I can sectional wind these things....Took me about 4 to 5 hours to make one I think, calculations from my design speadsheet showed a Q of about 250 at 10khz...I only made one so far, but the first coil measured 233 to 300 with a mastech LCR meter..but after testing under load with a Vp in of 5 and 10V, the Q dropped to only 120....so now I'm bummed...
I studied air coils previously but the copper resistance was what stopped me from doing that type of coil, its a much simpler inductor model, where there is no core resistance...
Recently I have found that Liquid Nitrogen or LN2, can decrease the copper resistance almost 80%, therefore increasing the Q of a coil...but I'm not sure if I want to do that...
So I've hit a wall...either continue winding these MPP cores for only a Q of about 120 and hope for the multiphase second ratio to be approching 1 or look for a better coil design....either way I know its not going to be easy..

gotoluc

• Moderator
• Hero Member
• Posts: 2835
Re: Multiphase Resonant Circuits
« Reply #3 on: August 30, 2017, 10:05:28 PM »
You've definitely put a lot of thought and work into this!
I can see your knowledge surpasses mine and hopefully you will find the courage to wind more coil stages before giving up.
I've always thought if we could eliminate coil resistance we could probably achieve OU
Liquid Nitrogen is not so difficult to purchase or even make if one needed too. There's some youtube video's that show you how to use dry ice and alcohol to make some.

Wish you all the best and courage to continue your work

Regards

Luc

Free Energy | searching for free energy and discussing free energy

Re: Multiphase Resonant Circuits
« Reply #3 on: August 30, 2017, 10:05:28 PM »

sourcecharge

• Newbie
• Posts: 10
Re: Multiphase Resonant Circuits
« Reply #4 on: September 01, 2017, 03:04:36 PM »
Will a moderator please check out my post in this section and approve it please?

http://overunity.com/other-antigravity-machines-and-devices/

Thank you

Free Energy | searching for free energy and discussing free energy

Re: Multiphase Resonant Circuits
« Reply #4 on: September 01, 2017, 03:04:36 PM »

sourcecharge

• Newbie
• Posts: 10
Re: Multiphase Resonant Circuits
« Reply #5 on: September 15, 2017, 08:34:53 PM »
It's hard to believe that I'm to only one doing the research on core resistance, does anyone else have similar experiences with the legs equation calculation of core resistance vs under load conditions?

Thaelin

• TPU-Elite
• Hero Member
• Posts: 909
Re: Multiphase Resonant Circuits
« Reply #6 on: September 16, 2017, 01:32:06 PM »
High Sourcecharge:
Actually they are discussing this  in another thread. In kapandzies cousin, they are realizing that some of the cores do have a lower ohmage than standard ferrite. I have noticed that in a few cores that I have played around with. Grum made mention of it so that is where I found out of it.
Dont give up the race. Follow your heart and keep your eyes on the goal. That is what fires the persuit after a cause. Because I have always had a strong background in mechanical, I have been keeping my eyes on a specific area of interest. But I never let a possible idea go by with out looking into it.

be well and over look my club fingers.   thay

Free Energy | searching for free energy and discussing free energy

Re: Multiphase Resonant Circuits
« Reply #6 on: September 16, 2017, 01:32:06 PM »

sourcecharge

• Newbie
• Posts: 10
Re: Multiphase Resonant Circuits
« Reply #7 on: September 16, 2017, 10:53:59 PM »
High Sourcecharge:
Actually they are discussing this  in another thread. In kapandzies cousin, they are realizing that some of the cores do have a lower ohmage than standard ferrite. I have noticed that in a few cores that I have played around with. Grum made mention of it so that is where I found out of it.
Dont give up the race. Follow your heart and keep your eyes on the goal. That is what fires the persuit after a cause. Because I have always had a strong background in mechanical, I have been keeping my eyes on a specific area of interest. But I never let a possible idea go by with out looking into it.

be well and over look my club fingers.   thay

Yes, this is mainly because of the permeability of the ferrite cores, and it's ace properties....

Magnetic Measurements at Low Flux Densities Using the Alternating Current Bridge
By Victor E. Legg

Legg's equation states:
R(core) = u*L*(a*(Bmax)*F + c*F + e*F^2)
Where:
u = reference permeability
L = inductance (H)
F = frequency
a, c, and e (ace) are properties of specific types of material and they vary under different Gauss conditions..
a = Permeability-magnetizing force coefficient
c= Residual resistance coefficient
e = Eddy current coefficient of core
B(max) Gauss= V(rms) * 10000 / (sqrt2 * pie * N * A(e) )
Where:
N = number of turns
A(e) = effective Area (cm^2)
V(rms) = voltage rms across the inductor

This equation is used with MPP cores from a manufacturer formally known as Arnold's Magnetics.
Arnold's Magnetics is now Micrometals, but they used to have a datasheet that listed all of the ace values for all of their different cores' permeability.
MPP cores are the most efficient in core resistance, with the exception to air cores, which really isn't a core...
They only come in toroids.

My problem is somewhat different....
I am able to design, calculate, and measure an inductor using these equations for specific Q.  Last one was for about 250 and measured with my mastech 5308 LCR meter which fluctuated between 230 and 300 Q.

Here is the thing, the equations within my 2nd post are known to work for the Vp(out) of a series resonant circuit if all resistance is known....tested under B2 spice...and observed using air coils with air capacitors....
So when I put in a certain Voltage in, and get an amplified Voltage out, I can specifically state that there must be a exact amount of series resistance within the circuit within an accuracy of the digital oscilloscope...

Most of the resistances can be measured and at only 10khz, the only resistance that would be of significance that cannot be measured is the core resistance.

AC wire resistance and parasitic capacitance of the inductor should be very low....

First because the frequency of operation is at only 10 khz, and AC wire resistance does not even measure when below 50khz with 28 AWG wire:

Second, I cannot believe that a progressively wound core with polyimide Heavy insulated magnet wire with a parasitic capacitance of only 6pF (64100 hz Self Resonant Frequency) could have that much effect at 10khz and is not variable to voltage increase.
Polyimide has a dissipation factor of only 0.002....that's very low.....so, a capacitor does not decrease in efficiency well below it's dielectric breakdown point, and in this case, Heavy polyimide magnet wire breaks down at 4000 V, where I'm only generating <1500V with 5 or 10 V inputs ...

So when you measure a core at 230 - 300 Q and the output voltage of the LC circuit shows a resistance of a corresponding Q of only 120, the backward calculations of the magnetic field show that in order to generate the amount of resistance within the core, it would have to be at 167 Gauss but the magnetic field was calculated and measured to have only about 6.5 Gauss...

In conclusion, the input actual voltage was 5V, but backward calculating the required input voltage to generate 167 Gauss, would equal to an input voltage of 129 V.!!!!!!!???!!!!

WTF

« Last Edit: September 17, 2017, 01:08:40 AM by sourcecharge »

sourcecharge

• Newbie
• Posts: 10
Re: Multiphase Resonant Circuits
« Reply #8 on: September 17, 2017, 04:11:34 PM »
Just wanted to correct myself because I was posting of the top of my head instead of checking my documentation, and post some of some really hard to find pdfs...

First:

B(max) is Flux density....
B(max) = V(rms) x 10^8 / ( sqrt(2) * pie * F * N * A(e) )

so ya, a little different, but my spreadsheets were correct, I simply didn't remember them exactly...

Second, Micrometals is not giving these out anymore, and they are 10+ years old but they still work great....

The intro pdf has all the formulas that anyone would need to produce high quality inductors...

Funny that it's no longer on the web...