Cross current vector transformation as H and I have been stating all along

If i am correct the diode plug is here as a cross current vector

transformations same as how i got the one wire light bulb to work on the RV.

The cross product occurs in the formula for the vector operator curl. It is also

used to describe the Lorentz force experienced by a moving electrical charge in

a magnetic field. The definitions of torque and angular momentum also involve

the cross product.

http://en.wikipedia.org/wiki/Cross_productwhere as Pseudovector becomes is a quantity that transforms like a vector under

a proper rotation, but gains an additional sign flip under an improper rotation

(a transformation that can be expressed as an inversion followed by a

proper rotation). The conceptual opposite of a pseudo vector is a (true)

vector or a polar vector.

This concept can be further generalized to pseudoscalars and pseudotensors, both

of which gain an extra sign flip under improper rotations compared to a true

scalar or tensor.

Physical examples of pseudovectors include the magnetic field, torque,

vorticity, and the angular momentum.

The transformations may be continuous (such as rotation of a circle) or discrete

(e.g., reflection

of a bilaterally symmetric figure, or rotation of a regular polygon).

Continuous and discrete transformations give rise to corresponding

types of symmetries. Continuous symmetries can be described by Lie groups while

discrete symmetries are described by finite groups (see Symmetry group).

Symmetries are frequently amenable to mathematical formulation and can be

exploited to simplify many problems

Distinction between vectors and pseudovectors is overlooked, but it becomes

important in understanding and exploiting the effect of symmetry on the solution

to physical systems. For example, consider the case of an electrical current

loop in the z=0 plane: this system is symmetric

(invariant) under mirror reflections through the plane (an improper

rotation), so the magnetic field should be unchanged by the reflection.

But reflecting the actual magnetic field through that plane changes its

signâ€”this contradiction is resolved by realizing that the mirror

reflection of the field induces an extra sign flip because of its

pseudovector nature

http://en.wikipedia.org/wiki/Pseudovector becomes a real vector

That gets transformed to become non-reflective,

For example, an electrical wire is said to exhibit cylindrical symmetry, because

the electric field strength at a given distance r

from an electrically charged wire of infinite length will have the same

magnitude at each point on the surface of a cylinder (whose axis is the

wire) with radius r. Rotating the

wire about its own axis does not change its position, hence it will

preserve the field. The field strength at a rotated position is the

same, but its direction is rotated accordingly. These two properties

are interconnected through the more general property that rotating any system of

charges causes a corresponding rotation of the electric field.

The two examples of rotational symmetry - spherical and cylindrical - are each

instances of continuous symmetry.

These are characterised by invariance following a continuous change in

the geometry of the system. For example, the wire may be rotated

through any angle about its axis and the field strength will be the

same on a given cylinder. Mathematically, continuous symmetries are

described by continuous or smooth functions. An important subclass of continuous

symmetries in physics are spacetime symmetries.

Time reversal:

Many laws of physics describe real phenomena when the direction of time

is reversed. Mathematically, this is represented by the transformation.

This may be illustrated by describing the motion of a particle thrown

up vertically (neglecting air resistance). For such a particle,

position is symmetric with respect to the instant that the object is at

its maximum height. Velocity at reversed time is reversed.

maximum height is where the neon peak circuit works best

C, P, and T symmetries

The Standard model

of particle physics has three related natural near-symmetries. These

state that the universe is indistinguishable from one where:

C-symmetry (charge symmetry) - every particle is replaced with its

antiparticle.P-symmetry (parity symmetry) - the universe is reflected as in a

mirror.T-symmetry

(time symmetry) - the direction of time is reversed. (This is

counterintuitive - surely the future and the past are not symmetrical -

but explained by the fact that the Standard model describes local

properties, not global properties like entropy.

To properly time-reverse the universe, you would have to put the big

bang and the resulting low-entropy conditions in the "future". Since

our experience of time is related to entropy, the inhabitants of the resulting

universe would then see that as the past.)

Each of these symmetries is broken, but the Standard Model predicts

that the combination of the three (that is, the three transformations

at the same time) must be a symmetry, known as CPT symmetry. CP violation,

the violation of the combination of C and P symmetry, is a currently

fruitful area of particle physics research, as well as being necessary

for the presence of significant amounts of matter in the universe and

thus the existence of life. !!!!!

More advanced groups

http://en.wikipedia.org/wiki/Lie_groupLie groups may be thought of as smoothly varying families of

symmetries. Examples of symmetries include rotation about an axis. What

must be understood is the nature of 'small' transformations, e.g.

rotations through tiny angles, that link nearby transformations. The

mathematical object capturing this structure is called a Lie algebra (Lie

himself called them "infinitesimal groups"). It can be defined because

Lie groups are manifolds, so have tangent spaces at each point

http://en.wikipedia.org/wiki/Bose-Einstein_statisticsFermi-Dirac and Bose-Einstein statistics apply when quantum effects have to be

taken into account and the particles are considered "indistinguishable". The

quantum effects appear if the concentration of particles

How does it become a ampla-phi-R

scalar multiplication is commutative with cross multiplication

http://en.wikipedia.org/wiki/Cross_productMore generally, the result of a cross product may be either a vector

or a pseudovector, depending on the type of its operands (vectors or

pseudovectors). Namely, vectors and pseudovectors are interrelated in

the following ways under application of the cross product:

vector Ã— vector = pseudovectorvector Ã— pseudovector = vectorpseudovector Ã—

pseudovector = pseudovector

Because the cross product may also be a (true) vector, it may not

change direction with a mirror image transformation. This happens,

according to the above relationships, if one of the operands is a

(true) vector and the other one is a pseudovector (e.g., the cross product of

two vectors). For instance, a vector triple product involving three (true)

vectors is a (true) vector.

. Why is it a 3 phase RV ?

A vector triple product typically returns a (true) vector. More exactly,

according to the rules given in cross product and handedness, the triple product

a Ã— (b Ã— c) is a vector if either a or b Ã— c (but not both) are pseudovectors.

Otherwise, it is a pseudovector. For instance, if a, b, and c are all vectors,

then b Ã— c yields a pseudovector, and a Ã— (b Ã— c) returns a vector

So now we hold the vectors and we call them charge and now you see how it

becomes OU

Vectorizing

Thanks

Cavetronics Labs