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1 Problem

Discuss the time evolution of various forms of energy a series RLC circuit that is energized
at time t = 0 by a battery of voltage V . Include consideration of radiated energy, supposing
that the circuit has the form of a circular loop of radius a.

This problem relates to the question of whether a capacitor can be charged without loss
of energy. As confirmed in sec. 2.1, if the capacitor is charged to voltage V in a simple RC
circuit, then the resistor dissipates energy equal to that eventually stored in the capacitor.
Heinrich [1] noted that this energy loss could be avoided if the battery is replaced by a
variable power supply whose voltage is raised “slowly” to the desired value V .1 See also
[2, 3]. If one capacitor is charged by another in a circuit with negligible resistance, there is
again a loss of energy, to radiation in this case [4, 5, 6].

These analyses leave open the question of whether energy loss is inevitable whenever a
capacitor is charged “quickly”. Show that a capacitor can be charged with only modest
energy loss in an underdamped series RLC circuit if the battery is disconnected after 1/2
cycle.

2 Solution

Energy flows from the battery into four forms: the I2R heating of the resistor, the electro-
static energy UC = CV 2/2 that remains stored in the capacitor once the transient current
has died out, the energy UL(t) = LI2/2 that is temporarily stored in the inductor while
the current is nonzero, and the energy radiated away while the current in the circuit is
changing. We assume that radius a of the circuit is small compared to the wavelength of all
significant frequency components of the radiation, so that the current I is independent of
position around the circuit and the radiation is well approximated as that associated with
the magnetic dipole moment

m(t) = πa2I(t), (1)

namely
dUrad

dt
=

1

6πc4

√
μ0

ε0

m̈2 = 2.4 × 10−32a4Ï2. (2)

The Kirchhoff equation for the series RLC circuit is

V = Lİ + IR +
Q

C
, (3)

1The stored energy is Q2/2C ∝ [
∫

I dt]2, while the energy dissipated is
∫

I2R dt. So if the current I is
smaller and lasts for a longer time, the stored energy can be the same but the energy dissipated will be less.
To obtain a lower current in the circuit, the voltage applied during the characteristic time interval for energy
dissipation must be smaller; hence the prescription to raise the voltage slowly.
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whose time derivative is

0 = LÏ + İR +
I

C
. (4)

We seek solutions of the form e−αt, for which eq. (4) leads to the quadratic equation

Lα2 − Rα +
1

C
= 0, (5)

whose solutions are

α1,2 =
R

2L
∓
√

R2

4L2
− 1

LC
=

R

2L
∓ i

√
1

LC
− R2

4L2
. (6)

The current in the circuit is zero at time t = 0 when the battery is connected to the
circuit (and it cannot jump instantaneously to a nonzero value because of the inductor).
Hence, the total current in the circuit can be written

I(t) = I0(e
−α1t−e−α1t) = 2I0e

−Rt/2L sinh

√
R2

4L2
− 1

LC
t = 2iI0e

−Rt/2L sin

√
1

LC
− R2

4L2
t. (7)

Just after the battery is connected, the voltage drops across the resistor and capacitor are
still zero, so the initial voltage drop across the inductor is related by

V = Lİ(0) = LI0(α2 − α1) = I0

√
R2 − 4L

C
= iI0

√
4L

C
−R2 . (8)

We now consider the cases that R is larger or smaller than 2
√

L/C .

2.1 Overdamped Circuit: R > 2
√

L/C

In this case the current is given by

I(t) =
V√

R2 − 4L
C

(e−α1t − e−α2t) =
V√

R2

4
− L

C

e−Rt/2L sinh

√
R2

4L2
− 1

LC
t. (9)

The energy temporarily stored in the inductor at time t is

UL(t) =
LI2

2
=

V 2L
R2

2
− 2L

C

e−Rt/L sinh2

√
R2

4L2
− 1

LC
t. (10)

For large resistance R the inductive energy reaches a maximum of UL,max ≈ UCR/
√

L/C �
UC at time t ≈ (L/R) ln(R2C/L).

The power dissipated in the resistor is

dUJoule

dt
= I2R =

V 2R

R2 − 4L
C

(e−2α1t − 2e−(α1+α2)t + e−2α2t), (11)
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and the total energy dissipated after a long time is

UJoule =
V 2R

R2 − 4L
C

(
1

2α1
− 2

α1 + α2
+

1

2α2

)
=

V 2R

R2 − 4L
C

(
RC

2
− 2L

R

)
=

CV 2

2
= UC, (12)

where UC = CV 2/2 is the energy stored in the capacitor at large time t.
The radiated power is obtained from eqs. (2) and (9),

dUrad

dt
= 2.4 × 10−32a4 V 2

R2 − 4L
C

(α2
1e

−2α1t − 2α1α2e
−(α1+α2)t + α2

2e
−2α2t), (13)

and the total radiated power after a long time is

Urad = 2.4 × 10−32a4 V 2

R2 − 4L
C

(
α1

2
− 2α1α2

α1 + α2
+

α2

2

)
= 2.4 × 10−32a4 UC

RLC
. (14)

In principle the radiated energy can become large if the inductance is very small such that
the second derivative Ï becomes very large. However, the inductance of a loop of radius a
made of wire of radius b is L ≈ μ0a ln(a/b), so the radiated power is bounded by

Urad
<∼ 3 × 10−38a5 ln

a

b

1

RC
UC (15)

(in SI units). In any practical, transient RLC circuit the radiated energy is negligible.
In sum, when a capacitor is charged via an overdamped RLC circuit, as much energy is

lost to Joule heating as ends up stored in the capacitor.

2.2 Underdamped Circuit: R < 2
√

L/C

In this case the current is given by

I(t) =
V

i
√

4L
C

− R2
(e−α1t − e−α2t) =

V

ωL
e−Rt/2L sinωt, (16)

where

ω =

√
1

LC
− R2

4L2
. (17)

The energy temporarily stored in the inductor at time t is

UL(t) =
LI2

2
=

V 2

2ω2L
e−Rt/L sin2 ωt. (18)

For small resistance R the inductive energy reaches a maximum of UL,max ≈ UC at time
t ≈ π/2ω ≈ π

√
LC/2.

The charge Q(t) on the capacitor at time t is

Q(t) =
∫ t

0
I(t) dt =

V

ω2L

∫ ωt

0
e−Rx/2ωL sinx dx

=
V

ω2L

1

1 + R2/4ω2L2

[
1 − e−Rt/2L

(
R

2ωL
sinωt + cos ωt

)]

= V C
[
1 − e−Rt/2L

(
R

2ωL
sinωt + cosωt

)]
. (19)
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The energy UC(t) stored in the capacitor at time t is

UC(t) =
Q2(t)

2C
= UC

[
1 − e−Rt/2L

(
R

2ωL
sin ωt + cosωt

)]2
. (20)

The power dissipated in the resistor is

dUJoule

dt
= I2R =

V 2R

ω2L2
e−Rt/L sin2 ωt, (21)

and the energy UJoule(t) dissipated in the resistor up to time t is

UJoule(t) =
V 2R

ωL2

∫ ωt

0
e−Rx/ωL sin2 x dx

= UC

[
1 − e−Rt/L

(
1 +

R2 sin2 ωt

2ω2L2
+

R

2ωL
sin 2ωt

)]
. (22)

For large t the energy dissipated equals the energy stored. However, the battery could be
disconnected from the circuit whenever the current is zero, i.e., at t = nπ/ω. In particular,
if the battery were disconnected at time t = π/ω, we would have

UJoule(π/ω)

UC(π/ω)
=

1 − e−πR/ωL

1 + e−πR/2ωL
≈ πR

2
√

L/C
, (23)

where the approximation holds for small resistance R. That is, the capacitor can be charged
with only small loss of energy to Joule heating by use of a large L, small R, and connecting
the battery for only 1/2 of a (damped) cycle. As a bonus, the resulting voltage on the
capacitor is nearly twice that of the battery.

When R �
√

L/C the second time derivative of the current is

Ï(t) ≈ V ω

L
e−Rt/2L sinωt. (24)

The radiated power is obtained from eqs. (2) and (24),

dUrad

dt
≈ 2.4 × 10−32a4V 2ω2

L2
e−Rt/L sin2 ωt, (25)

and the total radiated power up to time t is

Urad(t) ≈ 2.4 × 10−32a4 UC

RLC
(1 − e−Rt/L) (26)

Then,

Urad(π/ω) ≈ 2 × 10−32a4 πUC

L
√

LC
� UC (27)

Again, the radiation in this transient RLC circuit is negligible.
In sum, while a capacitor that is charged for long times in an underdamped RLC circuit

stores only as much energy as is lost to Joule heating, if the battery is disconnected after
1/2 cycle, the stored energy can be large compared to the energy lost to heat and radiation.
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