To browser these website, it's necessary to store cookies on your computer.
The cookies contain no personal information, they are required for program control.
  the storage of cookies while browsing this website, on Login and Register.

Storing Cookies (See : ) help us to bring you our services at . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: Thane Heins BI-TOROID TRANSFORMER  (Read 461656 times)

Offline MenofFather

  • Hero Member
  • *****
  • Posts: 943
« Reply #360 on: April 16, 2017, 11:50:57 AM »
Hey guys,
I've built a bi-tt and I'm having trouble understanding the calculations even in Thane Heins's patent. When I follow his calculations in the patent my results are valid. But I'm not fully convinced, I feel like I'm not understanding something about the power calculations on page 11/13;jsessionid=00FF002D301F0117FAC673F115883C30.espacenet_levelx_prod_5?CC=CA&NR=2594905A1&KC=A1&FT=D&date=20090118&DB=EPODOC&locale=en_EP

Thane only took the current and resistance to measure efficiency. If I understand this correct, he took the real power instead of the apparent power for his  calculation. Because if you straight up measure voltage and current on the primary, the product will be higher than whatever you measure on the secondaries put together. Can someone please shed some light on this? Thanks.
In this image look incorect input calculation.

To corect calculate input power you need voltage x curent x power factor. For exampla input voltage 220 volts. Input curent 1 A and power factor 0.1 (or 10 precents). So input power full is 220x1=220 VA. Real power is 220 Va x 0.1 so is 22 W. And reactive power who return to socket is 220-22=198 W.
Power factor is shift deegre betwen curent and voltage. For example in active load like incandecel bulb power factor is 1. For inducatnce load like primary coil of transformer without load transformer power factor can be 0.02-0.2.
If shift betwenn voltage and curent is 90 degree then power factor is 0. If degree is 0, then power factor is 1.  In active load like incandesent bulb and resistive head elements power factor is always 1 (or 100 precents).

Offline Westerwald

  • Newbie
  • *
  • Posts: 1
« Reply #361 on: May 03, 2017, 07:30:01 PM »
I just got a reply back on the price inquiry for the below design.

This is their offer:

piece price: 2.47€/pc.
material included (standard steel)
programming cost: 0€
Total cost: 98.8€

To be honest I'm quite surprised at the low price. It could be even lower if I provided them my own material being true silicon steel for instance.
Is this part needs to be magnetized or can be used as is?

Offline minnie

  • Hero Member
  • *****
  • Posts: 1244
« Reply #363 on: December 18, 2017, 06:50:17 PM »

« Reply #328 on: March 27, 2014, 02:50:52 AM »

Well, I assume that you didn't make the measurements either.  But I am quite familiar with his stuff over several years and I read a fair amount on his stuff and I was even involved in discussing one of his setups with Thane himself on one thread.  I wasn't impressed with what he had to show.  Beyond that it's been a long time and there are no motors or scooters or anything using his "regenerative acceleration" that I am aware of.

If the voltage source is 120 VAC then just a tiny phase shift away from 90 degrees that is not at all easy to see on a scope represents real power going into a load.  If the guy had legitimate technology that did something useful I would support him but it's not the case.

« Re

Offline romeos69

  • Newbie
  • *
  • Posts: 1
« Reply #364 on: December 04, 2021, 11:35:43 PM »
Hi Guys! first sorry for my english. I read and write from translation.
I read almost all the posts I think, and sorry but you think the wrong way?
 For example when it rains and blows, why does the rain fall while the wind can travel parallel to the earth ??
If you really want the primary field of the magnetic coil to travel without being affected by the magnetic field of the secondary coil; look at how nature works;
First of all, if we do not fully understand how the magnetic field of a magnet works we will not find a solution for the electromagnetic field,
When we close the primary coil, a magnetic field is created that travels to the core. The primary core must be made of thin iron sheets which form a good bird and attention to detail is very strong. iron and two-component resin is a very good conductor of magnetic field but does not have the density that the primary nucleus has. Once created in the secondary coil magnetic field will find a very hard wall in the core first, do not forget that the behavior of magnetic fields is exactly the same as the behavior of water.
I will upload an image too!
 I can be wrong I want to tell you that I'm not a scientist I're just a builder,

Offline skycollection 1

  • Jr. Member
  • **
  • Posts: 54
« Reply #365 on: June 26, 2022, 04:47:28 PM »
Hello everyone, my name is Jorge Rebolledo (skycollection) and I intend to build a bi-toroid transformer, for which I have already built the ferrite core, only I did not study electronics and I do not know how to make the primary, what wire gauge I should use and what resistance (approximately) and the two secondaries, the wire gauge and resistance of both, and the voltage that I should apply, I hope your understanding, I am learning and my Spanish language, I also have some limitations with videos that are in English, but I am also learning. This is the ferrite core I built, thanks in advance for your help, this is the video:

Offline alan

  • Hero Member
  • *****
  • Posts: 716
« Reply #366 on: July 17, 2022, 10:31:28 PM »
This one is very similar, the formula's may be helpful:

A Free-Energy Device by Paul Raymond Jensen
 I have built a transformer which supplies more power to its load than is drawn from its primary source. I named this device The Unidirectional Transformer (UDT), because the magnetic reaction of the load current does not affect the magnetic action of the primary circuit. The UDT is composed of a parallel LC resonant primary, a split secondary, a gapped magnetic core, and a "feedback winding." Virtually the only input power needed is that used to magnetize the core. The magnetic core I used came from a small 60 Hz commercial power transformer made of interleaved silicon steel E and I laminations. I took the core apart, separated the Es and the Is, and made one stacked E core and one stacked I core from the laminations. Then I filed down the centre leg of the E core about 15 mils (0.381mm) to gap the combined E-I transformer core. The resulting m of the core at 60 Hz was about 100.
The primary winding is wound on the centre leg of the core. The two secondary windings are wound on the two outer legs of the core and are series connected. Both secondary windings have the same number of turns. The "feedback winding" is wound over the primary on the centre leg and is connected in series with the secondary. The free-energy action of the UDT follows directly from the laws of magnetic circuits. Consider what happens when an AC sine voltage is applied to the UDT primary. A magnetizing current flows, which can become rather high because of the low m of the core. Fortunately, gapping the core results in a fairly constant m through the entire AC cycle, up to a peak H of about 720 A-T/M.
This results in a constant primary inductance, which permits parallel LC resonation. Resonating the primary reduces the magnetizing power to that necessary to match I2* R losses in the primary and the hysteresis losses in the core. Magnetizing the core results in an AC sine voltage being induced across the secondary. The magnetic coupling between the primary and the secondary is very high, but the core area within each secondary winding is only one-half that of the primary. This means that the volts/turn of the secondary will be only one-half that of the primary. For the secondary voltage to equal the primary voltage, the secondary must have two times the number of turns in the primary.
The primary also induces a voltage across the feedback coil, but the purpose and characteristics of the feedback coil will be explained later. When a current is drawn from the output, the two secondary windings each generate a magnetomotive force (MMF) directed against the MMF of the primary. The MMF of each secondary winding "sees" a series-parallel magnetic circuit through the transformer core. One magnetic circuit, "seen" by each secondary winding, is through the centre leg of the core. The other magnetic circuit "seen" by each secondary winding is through the two outer legs of the core. The resulting magnetic flux generated by the MMFs of the two secondary windings is dependent upon the reluctances of each of the magnetic circuits.
Because the centre leg is gapped, it has a higher reluctance than do the outer legs. This means that less magnetic flux from the secondary will pass through the centre leg than will pass through the outer legs.
In my transformer, the reluctances of the magnetic circuits through the centre leg were three times higher than the reluctances of the magnetic circuits through both outer legs. This was difficult to achieve and required hours of filing, polishing and fitting of the E and I cores. The alternative was to increase the gap, which was not acceptable in my particular design because I was driving the transformer at 60 Hz and could not afford any additional loss of m in the core.
Since the reluctances of the "centre leg circuits" were three times higher than the reluctances of the "outer leg circuits," one-quarter of the secondary flux passed through the centre leg, while three-quarters of the secondary flux passed through both outer legs. The magnetic flux from the two secondary windings cancels in the "outer leg circuits," leaving only one-quarter of the total flux generated by the output current to react back upon the primary. This resulted in a current gain in the secondary, relative to the primary. Lenz's law was bypassed, and free-energy resulted. An alternate explanation for the current gain in the UDT is to consider each secondary winding as acting as the primary winding for the other secondary winding when an output current is drawn because the two secondary windings generate geometrically opposing fields.
Now consider the "feedback winding." It is connected in series with the secondary and is wound over the primary winding on the centre leg of the core. When the core is magnetized, an induced voltage will appear across the feedback winding which will subtract from the voltage across the secondary. The purpose of the feedback winding is to cancel the remaining secondary flux passing through the centre leg of the core. It effectively isolates the currents in the primary and the secondary at the cost of a reduced output voltage. The feedback winding generates a magnetic flux equal and opposite to the residual magnetic flux from the secondary when an output current is drawn.
Given the above example, where three-quarters of the secondary flux self-cancels in the "outer leg circuits," the feedback coil will only have to oppose one-quarter of the total secondary flux. Since the feedback winding has two times the core area of the secondary windings and carries the full output current, it need have only one-quarter the number of turns of each secondary winding. However, this will reduce the output voltage by 25 percent. Therefore, to achieve the originally desired output voltage, the total number of secondary turns must be increased by the factor 4/3; the feedback coil must then have one-quarter of the number of turns of each secondary winding in this new secondary circuit.
Given the condition in which the feedback coil perfectly cancels all the residual secondary flux through the centre leg of the core, the power drawn from the output will be nearly independent of the primary input power. The primary input will be the magnetizing power and nothing more. The output power will have a negligible phase angle (due to the leakage inductance) if the m of the core (as seen by the primary) is at least 100. In practice, it is best if the feedback winding is short a turn or two, thereby preventing series inductance in the output at the cost of a small increase in the primary input power. A parallel resonant primary circuit allows for great input power reduction while ensuring voltage stability and linear operation under varying output loads.
The UDT can be used without a resonant primary circuit for the amplification of any time-varying signal. The main flaws of the UDT are the (normally) low primary m and the very long secondary wire required to ensure isolation of the input from the output. A single or double stack of E-I laminations seems to provide the optimum core geometry, all factors considered. At high frequencies it becomes practical to use ferrite cores with "centre leg circuit" reluctances less than their "outer leg circuit" reluctances because the volts/turn of each winding can be made very high. Conventional transformer design techniques should be used once the basic UDT topology has been determined.
I have invented and developed the UDT on my own, without benefit of any knowledge of other free-energy devices, if they exist, which utilize the basic principles of UDT operation. Please feel free to use this information as you desire. However, I hope that no one will attempt to patent and control this type of transformer. The time on Planet Earth is 15 minutes before midnight; there is no time left to waste.
Free-energy technology is not meant to be controlled by vain and greedy parasites who wish to use a gift from God to exploit their fellow man. Free-energy technology represents a spiritual transition of the human race. Free-energy is not meant to be owned, period!
 UDT EQUATIONS Number of Turns = N
a = V(output)/V(primary)
V(Primary)/N(Primary) = V(feedback)/N(feedback) = V(secondary)/N(secondary)/2
N(feedback) = [N(secondary)/2] [(R of outer circuit)/(R of outer circuit)+(R of centre circuit)]
a[N(Primary)] = [N(secondary)/2)-N(feedback)]
R = Reluctance = Y/mA

Offline skycollection 1

  • Jr. Member
  • **
  • Posts: 54
« Reply #367 on: July 18, 2022, 02:27:46 AM »
Alan, thanks for replay, i will study all your commentaries and thanks for your time. I have a video on youtube about thane heinz bi-toroid transformer, is my first device
and i hope be of interest for you.