Free Energy | searching for free energy and discussing free energy

Solid States Devices => solid state devices => Topic started by: nix85 on August 18, 2020, 07:06:59 PM

Title: few general formulas
Post by: nix85 on August 18, 2020, 07:06:59 PM
like title says, just some general stuff u all know in one place, feel free to add anything

λ = c/f
F = MA
momentum = mv²
Kinetic Energy ke = 1/2 mv²
centrifugal/centripetal force: F = mv²/r
point body angular momentum momentum unit: L = r x p kg m/s
Force = Mass * acceleration
Work = Change in Energy
Work = force * distance moved  unit: newton/meter or joule or Work = Mass * Gravity * Height
Power = work / time = force * displacement / time = force * velocity
Power (hp,watt) = work(ENERGY)/time aka time rate of energy transfer
Energy = Power x Time
A = V/T
f = 1/T
f = c/λ
for capacitor circuit V=C*(dv/dt)*R
XL= 2πfL
XC= -1/2πfC
Z = sqrt(R² + (Xc - Xl)²)
F = 1/6.28(LC)
F = 1/2π√LC
C=1(L*(2*pi*Fr)^2)
ohms law: V = IR
power per second:
P = IV
P = I²R copper losses
P = V²/R
true power P=VIcosφ
energy stored in an inductor E = LI²/2
energy stored in an cap E = 1/2 QV and E = CV²/2
for capacitor and inductor circuit V=IZ
1 Volt = 1 Joule/Coulomb
1 Watt = 1 Joule/Second
1W = 1V x 1A
1 Ampere = 1 Coulomb/Second
V × A = J/C × C/s = J/s = Watt
electric energy E = IVt and E = (V²/R)t
1V = 1A 1Ω
1F = 1C / 1V - amount of electric charge in coulombs that is stored per 1 volt
C = Q / V and C = kA/d
E = F / Q electric field (N/C or V/m) is force per charge
F = qE + qv x B lorentz law, em forces on a charge
R = 80*pi^2*(L/W)^2 rad. res. of antenna where L=length of antenna, and W = wavelength
τ = L/R inductor time constant, after ~5τ (transient time) current reaches 99.5%
τ = RC for RC circuit, after 5RC cap is fully charged
transformer size is proportional to B MAX =V/F
in alternator emf leads flux by 90°+
energy content of wave is proportional to the amplitude squared P ~ E2
Z = sqrt( L / C ) cable impedance
Ohm = volt / amp
reactive load temporary stores energy, not waste it (unless PS cant take it back)
v = L(di/dt) BACKEMF from an inductor
Short circuit current = V / alternator internal resistance
V=-N*dΦ/dt voltage - farraday's law
V = BLv induced voltage - farraday law for moving conductor
flux density = amper x turns x core permeability x core area / m² (T)
F = ILxB force on a conductor in a magnetic field - laplace
as load increases, current in the conductor must increase to balance the forces: I = F/BL
V = L * di/dt voltage across an inductor
Title: Re: few general formulas
Post by: bistander on August 18, 2020, 08:28:57 PM
like title says, just some general stuff u all know in one place, feel free to add anything

λ = c/f
F = MA
<snip>
Work = force * distance moved  unit: newton/meter or joule or Work = Mass * Gravity * Height
Power = work / time = force * displacement / time = force * velocity
<snip>

Where I added bold:
"newton/meter" should read "newton meter"

There can be misleading aspects of simple lists of equations like this as it can encourage people to just pick and choose without knowing proper context or fundamentals. Like difference between average values and instantaneous ones. Also confusion arising from common symbols used for different variables or units, like L for length or L for inductance.

Equations can be like computer programs: garbage in, garbage out.

Regards,
bi
Title: Re: few general formulas
Post by: nix85 on August 18, 2020, 08:58:01 PM
i stand corrected about newton meter altho it is clear from preceeding formula it should be newton meter.

for rest i only partially agree, anyone unsure of the variable meaning can simply google the formula, i wanted to keep it simple
Title: Re: few general formulas
Post by: bistander on August 18, 2020, 09:46:17 PM
i stand corrected about newton meter altho it is clear from preceeding formula it should be newton meter.

for rest i only partially agree, anyone unsure of the variable meaning can simply google the formula, i wanted to keep it simple

But it is those who are not unsure who can do harm. Sorry, I'm just not in favor of a list of formulae. Even worse are rules of thumb.
Regards,
bi
Title: Re: few general formulas
Post by: nix85 on August 18, 2020, 11:22:50 PM
But it is those who are not unsure who can do harm. Sorry, I'm just not in favor of a list of formulae. Even worse are rules of thumb.
Regards,
bi

well, it is sure best for everyone to build their own list of formulas so there is no confusion to what each variable means
Title: Re: few general formulas
Post by: nix85 on October 06, 2020, 03:21:55 PM
Another correction

for capacitor circuit I=C*(dv/dt)*R
Title: Re: few general formulas
Post by: bistander on October 06, 2020, 04:12:51 PM
Another correction

for capacitor circuit I=C*(dv/dt)*R

Hi nix85,

That doesn't look right. Current increases with increasing resistance? Got a source?

Regards,
bi
Title: Re: few general formulas
Post by: nix85 on October 06, 2020, 06:12:56 PM
Yea, ofc that's not right.

Formula is correct. I mistakenly changed it without much attention.

In a rush it appeared wrong but it's not.
Title: Re: few general formulas
Post by: Paul-R on October 06, 2020, 07:00:25 PM


Another correction: momentum = mv.

Title: Re: few general formulas
Post by: Leslie_Hilton on February 20, 2021, 10:05:00 PM
oh it's very useful
Title: Re: few general formulas
Post by: nix85 on April 02, 2021, 01:40:03 PM
notice energy content of a wave is proportional to the amplitude squared

twice the voltage, 4 times the energy

human hearing is logarithmic
Title: Re: few general formulas
Post by: lancaIV on April 02, 2021, 01:55:21 PM
work = force * distance moved unit

horizontal /vertical : it is difficult to say to ' a (human) worker' :

you moved (horizontal) only ,by Physics definition You  did not ' work'-ed !

Paying the ' mover/worker' time or not !? 8)


Sincere
OCWL
post scriptum : beside active(P = ) ,reactive(Q = )  and apparent power (S = )a fourth : complex power




                                             F = ILxB force on a conductor in a magnetic field - laplace




Lorentz Force and Laplace "Force"  relativity,by strict condition attention(here without arrows) :     


                                                   F(L) = q x v x B                      F(L)= BLI 

https://www.mpoweruk.com/machines.htm (https://www.mpoweruk.com/machines.htm)




Michael Faraday showed that passing a current through a conductor freely suspended in a fixed magnetic field creates a force which causes the conductor to move through the field.
Conversely, if the conductor rather than the magnet is constrained then the magnet creating the field will move relative to the conductor.
More generally, the force created by the current, now known as the Lorentz force, acts between the current conductor and the magnetic field, or the magnet creating the field.



The magnitude of the force acting on the conductor is given by:


F = BLI

Where F is the force on the conductor, L is the length of the conductor and I is the current flowing through the conductor

Title: Re: few general formulas
Post by: nix85 on April 02, 2021, 01:56:32 PM
here is the same with small corrections + some useful facts

wavelength = c/f
f = 1/T
momentum = mv
Kinetic Energy ke = 1/2 mv²
centrifugal/centripetal force: F = mv²/r
point body angular momentum momentum unit: L = r x p kg m/s
Force = Mass * acceleration
Work = force * distance moved  unit: newton meter or joule or Work = Mass * Gravity * Height
Work = Change in Energy
Power = work / time = force * displacement / time = force * velocity
Power (hp,watt) = work(ENERGY)/time aka time rate of energy transfer
Energy = Power x Time
A = V/T
for capacitor circuit V=C*(dv/dt)*R
XL= 2πfL
XC= -1/2πfC
Z = sqrt(R² + (Xc - Xl)²)
F = 1/6.28(LC)
F = 1/2π√LC
F = 1/2πL/R for inductor
C= L*(2πFr)²
Fc = 1/2πRC cutoff frequency of an RC low pass filter
ohms law: V = IR
power per second:
P = IV
P = I²R copper losses
P = V²/R
P=VI*PF apparent power (V and I are average, RMS)
energy stored in an inductor E = LI²/2
energy stored in an cap E = 1/2 QV and E = CV²/2
for capacitor and inductor circuit V=IZ
I = C dv/dt current through a cap
1 Volt = 1 Joule/Coulomb
1 Watt = 1 Joule/Second
1 Ampere = 1 Coulomb/Second
V × A = J/C × C/s = J/s = Watt
electric energy E = IVt and E = (V²/R)t
1F = 1C / 1V - amount of electric charge in coulombs that is stored per 1 volt
C = Q / V and C = kA/d
E = F / Q electric field (N/C or V/m) is force per charge
F = qE + qv x B lorentz law, em forces on a charge
R = 80*pi^2*(L/W)^2 rad. res. of antenna where L=length of antenna, and W = wavelength
t = L/R inductor time constant, after ~5t (transient time) current reaches 99.5%
t = RC for RC circuit, after 5RC cap is 99.5% charged
transformer size is proportional to B MAX =V/F
in alternator emf leads flux by 90°+
energy content of wave is proportional to the amplitude squared P = E²
Z = sqrt( L / C ) cable impedance
Ohm = volt / amp
reactive load temporary stores energy, not waste it (unless PS cant take it back)
v = L(di/dt) BACKEMF from an inductor
Short circuit current = V / alternator internal resistance
V=-N*dΦ/dt voltage - farraday's law
V = BLv induced voltage - farraday law for moving conductor
flux density = amper x turns x core permeability x core area / m² (T)
F = ILxB force on a conductor in a magnetic field - laplace
as load increases, current in the conductor must increase to balance the forces: I = F/BL


phase velocity is speed of particular frequency in particular medium

Destructive interference occurs when two identical waves are superimposed exactly out of phase. A standing wave is one in which two waves are superimposed but their phase varies from 0 - 180 to produce a wave that varies in amplitude but does not propagate. Nodes are points of no motion in standing waves.

impedence of an atenna is repeated every half wavelength down from the antenna, it does not matter what the characteristic impedance of the transmission line is (have to take into account velocity factor of the feedline)

characteristic impedance of uniform transmission line is the ratio of the voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction.

The first evidence that a capacitor and inductor could produce electrical oscillations was discovered in 1826 by French scientist Felix Savary. He found that when a Leyden jar was discharged through a wire wound around an iron needle, sometimes the needle was left magnetized in one direction and sometimes in the opposite direction. He correctly deduced that this was caused by a damped oscillating discharge current in the wire, which reversed the magnetization of the needle back and forth until it was too small to have an effect, leaving the needle magnetized in a random direction. American physicist Joseph Henry repeated Savary's experiment in 1842 and came to the same conclusion, apparently independently.

The 50-ohm compromise
For air dielectric coax, the arithmetic mean between 30 ohms (best power handling) and 77 ohms (lowest loss) is 53.5 ohms, the geometric mean is 48 ohms. Thus the choice of 50 ohms cam be considered a compromise between power handling capability and signal loss per unit length, for air dielectric.

But wait, there is perhaps a more practical reason for choosing fifty ohms:  a coaxial cable with polyethelene (PE) dielectric (ER=2.25) has minimum loss at 51.2 ohms, with (D/d=3.6). Thanks to Per!

displacement current is current through a cap. it has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field.

power factor = true power / aparent power
Apparent power is RMS voltage x RMS current
Reactive power = sqrt(apparent²-real²)

ELECTRIC POTENTIAL ENERGY dependent on the charge experiencing the electric field
ELECTRIC POTENTIAL only dependent on the position of the object

if cap is charged to 1000v, each plate is charged to +/- 500v

envelope (peak) detector, 1/fc << RC << 1/fm, fc freq. of a carrier, fm freq. of the message

diodes are nonlinear, resistance changes with current through them (at higher currents internal ohmic resistance becomes prevalent over pn potential barrier)

linear circuit is one in which the electronic components' values (such as resistance, capacitance, inductance, gain, etc.) do not change with the level of voltage or current in the circuit. Linear circuits are important because they can amplify and process electronic signals without distortion. An example of an electronic device that uses linear circuits is a sound system.

common emitter amplifier, voltage gain, no current gain, signal is phase shifted 180°
common collector amplifier aka "emitter follower" current gain, no voltage gain
common-base amplifier voltage gain, no current gain







Title: Re: few general formulas
Post by: nix85 on April 02, 2021, 02:21:01 PM
but you don't have to fight gravity to do work,
accelerating the mass horizontally from rest is also work

"work is a measure of energy transfer when force is applied in a certain direction"
Title: Re: few general formulas
Post by: lancaIV on April 02, 2021, 02:50:17 PM
but you don't have to fight gravity to do work,
accelerating the mass horizontally from rest is also work

"work is a measure of energy transfer when force is applied in a certain direction"




https://en.wikipedia.org/wiki/Work_(physics (https://en.wikipedia.org/wiki/Work_(physics))


this can be discussed,up to the point " positive" or "negative" work ,physical valuation !


 A force is said to do positive work if (when applied) it has a component in the direction of the displacement of the point of application.


A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.




http://physics.bu.edu/~duffy/py105/Energy.html (http://physics.bu.edu/~duffy/py105/Energy.html)
Work and energy
positive work - negative work - no work


If you pick a book off the floor and put it on a table, for example, you're doing positive work on the book, because you supplied an upward force and the book went up.


If you pick the book up and place it gently back on the floor again, though, you're doing negative work, because the book is going down but you're exerting an upward force, acting against gravity.


 If you move the book at constant speed horizontally,you don't do any work on it, despite the fact that you have to exert an upward force to counter-act gravity.




Title: Re: few general formulas
Post by: nix85 on April 02, 2021, 03:27:52 PM
of course there is positive and negative work
positive work being accelerating the object
and negative work delecreating it. neither is
relating to gravitational potential in particular.

work is change in energy, inertial, thermal, gravitational,
mechanical, electrical.. any change in energy of the system
is work.

"If you move the book at constant speed horizontally,you don't do any work on it, despite the fact that you have to exert an upward force to counter-act gravity."

to move the book at constant speed you must first accelerate it
and then work against friction, thus you are doing work,
that you have not lifted or lowered it vertically is irrelevant
Title: Re: few general formulas
Post by: lancaIV on April 02, 2021, 03:55:19 PM
Yes,You remarked the point : ' ... constant ...' versus Your state ' ... accelerating ( or decelerating) ...'

But between these physical states ' no/work' is the gain potential !
There is also inside the ' phase shift' : how is the Lorentz force,the Coloumb force, orientation/influence  ? (!)

To Your last statement the question : can accelerating not be negative work and decelerating positive work ? ( !)

Thinking from the ZP-Minkowskiraum  ::)
Title: Re: few general formulas
Post by: nix85 on April 02, 2021, 04:20:01 PM
pushing an object is work, on the floor or in space

accelerating negative work? maybe in antimatter universe

Title: Re: few general formulas
Post by: stivep on April 03, 2021, 12:51:59 AM

If you move the book at constant speed horizontally,you don't do any work on it, despite the fact that you have to exert an upward force to counter-act gravity.

really? ??? ??? ??? ??? ??

to move the book at constant speed you must first accelerate it
pushing force does do work
https://www.khanacademy.org/test-prep/mcat/physical-processes/work-and-energy-mcat/a/work-can-be-negative

Wesley
Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 01:02:24 AM
lanca clearly confused work with gravitational potential
Title: Re: few general formulas
Post by: kajunbee on April 03, 2021, 04:39:02 AM
https://socratic.org/questions/if-an-object-is-moving-at-a-constant-velocity-is-there-no-work-done-on-that-obje
Title: Re: few general formulas
Post by: lancaIV on April 03, 2021, 10:48:38 AM
From work-definition,pos. or neg.,to force-definition with orientation-pos. or orientation-neg.to 'conservation of momentum' !
Lifting force = Hub-Kraft /traction force = Zug-Kraft !

From force to pressure to impulse !
Discussion is a fine 'thing' ,but a machine does not discuss,it works like constructed : right or wrong!

Sincere

OCWL
p.s.: nix85,from earth/ground fixed 3d building print system the evolution state is now in the flying 3d print drone, there you need real and right XYZ- coordination from the flying object and the work object !

Imagine : a flying platform( ' flying carpet') as rescue device in a storm ,from different directions the wind forces,                  but the platform has to stay ,relatively,still and in horizontal position !

lifting platform (~ vtol)  inventor idea : Erich Mehnert : DE19944785
Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 12:57:29 PM
p.s.: nix85,from earth/ground fixed 3d building print system the evolution state is now in the flying 3d print drone, there you need real and right XYZ- coordination from the flying object and the work object !

Imagine : a flying platform( ' flying carpet') as rescue device in a storm ,from different directions the wind forces,                  but the platform has to stay ,relatively,still and in horizontal position !

lifting platform (~ vtol)  inventor idea : Erich Mehnert : DE19944785

horizontal acceleration is doing work
Title: Re: few general formulas
Post by: lancaIV on April 03, 2021, 01:16:54 PM
what wesley also by his link delivered :


https://www.khanacademy.org/test-prep/mcat/physical-processes/work-and-energy-mcat/a/work-can-be-negative (https://www.khanacademy.org/test-prep/mcat/physical-processes/work-and-energy-mcat/a/work-can-be-negative)


Work can only be done on an object if it moves, if the object moves up 2 meters and then it falls back down 2 meters and returns to it's original position then there was no work done on the block. If the distance from the starting position and the ending position does not change then there was no work done on the block. So to answer your question, no gravity has done no work on this object because it just fell back to it's original position.

Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 01:22:14 PM
that is equivalent of pushing a book across a table and then
pushing it back to exactly same place
as far as book's position is concerned overall work is 0
but work has been done, ur energy has been wasted,
that is, converted
Title: Re: few general formulas
Post by: lancaIV on April 03, 2021, 01:25:58 PM
nothing  in the example is (velocity) accelerating,neither vertical nor horizontal or diametral !


Staying in constant velocity !
Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 01:30:19 PM
irrelevant, going up is WORKing against gravity and vice versa
Title: Re: few general formulas
Post by: lancaIV on April 03, 2021, 01:38:24 PM
that is equivalent of pushing a book across a table and then
pushing it back to exactly same place
as far as book's position is concerned overall work is 0
but work has been done, ur energy has been wasted,
that is, converted


irrelevant the process ,total physical effect       W = 0


pushing forward,pushing backward : linear/rotative device !?  Nearly-,Net-, Zero Energy  8)   future program
Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 01:43:40 PM
what you speak is nonsense
again take the book example
you push it across the table
then back to original place
you claim no work is done
that is plain wrong
Title: Re: few general formulas
Post by: lancaIV on April 03, 2021, 01:56:39 PM

In the DDR. there was a job creation program:


In a warehouse, the same types of screws were brought together from a pile of screws by a work group,
these were brought together again in a second warehouse and brought back to the "work"- group as a mixed pile!


A.-B.-M.  : Arbeits-Beschaffung-Program,sozialistische Definition




"pointless/stupid work" and " Work: Physics,scientifical defintion"


by Physics : the above worker work value = Zero worth




In real ECONOMY the Zero-result :



https://translate.google.com/translate?sl=auto&tl=en&u=https://de.wikipedia.org/wiki/Walras-Gesetz (https://translate.google.com/translate?sl=auto&tl=en&u=https://de.wikipedia.org/wiki/Walras-Gesetz)


The above proof relates to an exchange economy, but can easily be generalized to production economies. It is important that Walras' law does not presuppose an equilibrium in the individual markets, but also applies in imbalances. If there is an equilibrium on each individual market, which certainly does not occur in reality, the statement is trivial because a sum of zeros results in zero.

Title: Re: few general formulas
Post by: nix85 on April 03, 2021, 02:11:29 PM
again you are not getting it, just because book
ended in the same location does not mean work
has not been done. you used energy to do work
both ways, work has been done. that it's pointless
or useless work is totally irrelevant
Title: Re: few general formulas
Post by: lancaIV on April 05, 2021, 12:44:11 PM
subjective or objective view-point :


https://translate.google.com/translate?sl=auto&tl=en&u=https://de.wikipedia.org/wiki/Arbeit_%28Physik%29 (https://translate.google.com/translate?sl=auto&tl=en&u=https://de.wikipedia.org/wiki/Arbeit_%28Physik%29)


If the direction of the force is not parallel to the direction of the displacement path, only the force component that is parallel to the path is effective.


If the force is perpendicular to the direction of movement, it does no work (an example would be wind pressure acting on a moving train from the side).


If the force is anti-parallel to the displacement path, the work done is negative, as in the first example.


If the direction of the force is perpendicular to the path, no physical work is done.


The physical term does not correspond to the everyday understanding according to which every porter is paid for the work they do.
Title: Re: few general formulas
Post by: nix85 on April 05, 2021, 01:57:14 PM
again you are not getting it, just because book
ended in the same location does not mean work
has not been done. you used energy to do work
both ways, work has been done. that it's pointless
or useless work is totally irrelevant
Title: Re: few general formulas
Post by: lancaIV on April 05, 2021, 02:02:13 PM
You are right,when the positive Joule ,probably vectorical less negative Joule, in the total scalar sum calculation is greater 0,zero !






Sincere


OCWL
Title: Re: few general formulas
Post by: nix85 on April 07, 2021, 06:14:53 PM
sum is not zero since work has been done
overall energy in the universe is 0 but that is another thing
Title: Re: few general formulas
Post by: nix85 on April 13, 2021, 05:00:14 PM
another random fact
Title: Re: few general formulas
Post by: nix85 on April 22, 2021, 01:44:34 PM
another random fact

Miniature Circuit Breaker (MCB) is used for overcurrent and short circuit
protection. it is using electromagnet to break contact for short circuit
and slower, heating bending element made of two different metals
(say copper and steel) to slowly break contact on prolonged overcurrent.
it does not protect people from shock cause it needs big current to activate
while man can die from as little as few dozen miliamps.

for this is used RCD aka FID. it uses a small toroid core with phase and neutral
windings perfectly canceling each other's magnetic field. in a case of slightest
current difference between the two (as in case when grounded man touches live
and some current flows through him back to neutral) magnetic field is produced
and picked up by third winding which instantly trips the switch and man is saved.

https://www.youtube.com/watch?v=oYLIpN4RwEg
https://www.youtube.com/watch?v=Q_bceXFTYnI