Up to 100 times less land use for the same photovoltaic or windforce conversion and consumer-near exploring :
https://run.unl.pt/bitstream/10362/93823/1/TomasFigueira51050.pdfpage 9,figure 1
Portugal,Algarve,Alcoutim,Martim Longo : 1750 KWh solar radiation per annum
https://jornaldoalgarve.pt/alcoutim-vai-ter-a-maior-central-solar-do-pais/800 ha land for 0,4 Euros per sqm means 1,5 % from 220 Mio Euros total investment costs .
4 ha per MW solar panel installation or 40 sqm per KW
Assuming 225 000 000 KWh or 225 GWh electricity conversion per annum this means by international solar parcs 2 Euro-Cents/KWh market selling price 4,5 Mio Euros per annum R.O.I. /200 Mio. investment = ONLY 2,25 % cash flow by "free market " conditioning !
Only for investment amortization ( 30 years) and 2,5% ( green tax ) capital tax we need 4,7 % annual net cash flow =4,4 Euro-Cents per KWh warranted ( by someone ) !
but here the first " max. " price barrier : b2b energy price,included distribution :
https://www.ispex.de/ actually 5,5 US $cents or 4,74 Euro-Cents/KWh average
+ second " max. " barrier
https://www.eex.com/de/ the energy market of "surplus electricity"
Question : how much fractional-Cent per KWh for the "solar parc " service/maintenance costs and salaries for up to " local 600 jobs" ??
Back to Figueira-study " Page 9,Figure 1" :
South Europe,Central-,West-/East-/North-Europe solar radiation KWh per sqm, natural ( 2004 - 2010 average)
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20100615&CC=ES&NR=2341161A1&KC=A1#Autonomous system of photovoltaic energy production
Gracias al sistema así descrito, se consigue en 700 m2 de superficie del cajón una producción de energía de 600 kW hora. by 10% conversion efficiency panels
being "orthodox"

:
https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20100113&DB=EPODOC&locale=en_EP&CC=EP&NR=2144298A2&KC=A2&ND=4#[0006] Thanks to the system thus described, it is possible to attain 600 kW/hour with a box with an inner surface of 700m<2>. " inner surface " means the surface from "box geometry" ground area,4 walls area and tect area !
600 KW/ ? sqm ground area 5 KW(h)/sqm ground area ?
Artificial 8766 hours " natural" day and night per annum photovoltaic conversion in Spitzbergen,Reykjavic,St.Petersburg,Talinn,Helsinki,......
Now instead 10% efficiency 2008 application
20,30% , and more photovoltaic panel conversion efficiencies :
minimum 1 KW per "surface" sqm per hour permanent
20% efficiency panels : 10 ? KW per sqm "ground " area ?
Algarve,Alcoutim,Martim-Longo : 350 KWh natural radiation electricity conversion per annum and per sqm panel
28 KWh per sqm "MartimLongo solar parc" ( 225 Mio KWh / 8 Mio sqm )
Artificial photovoltaic " Solarium "
f.e. Helsinki : 1. stage 8000 KWh per annum and sqm, 16 000 KWh per sqm and annum 2 x .stages,3.x .....
Artificial multi-stages solar towers !
Wind force conversion :
https://www.vernunftkraft.de/dreisatz/conventional : 3,3 ha / 1 MWp
but : 1 MWp means by average 16 - 20 % "Voll-Last " 170-200 KW average
Mit den angegebenen Werten für die Volllaststundenzahl liegt die durchschnittliche Leistung einer WKA demzufolge zwischen 16 und 20 % der Nennleistung. Eine WKA mit einer Nennleistung von 3 MW = 3000 kW hat also eine durchschnittliche Leistung zwischen 500 und 600 kW.Die durchschnittliche Leistung einer WKA (Formelzeichen
PWKA) liegt demnach bei
(https://www.vernunftkraft.de/de/wp-content/uploads/2013/06/f1.png)Mit den angegebenen Werten für die Volllaststundenzahl liegt die durchschnittliche Leistung einer WKA demzufolge zwischen 16 und 20 % der Nennleistung. Eine WKA mit einer Nennleistung von 3 MW = 3000 kW hat also eine durchschnittliche Leistung zwischen 500 und 600 kW.
Da eine WKA praktisch nie bei Nennleistung betrieben werden kann, weil der Wind selten mit der entsprechenden Intensität weht, liegt die durchschnittliche (tatsächliche) Leistung immer ganz wesentlich darunter. Diese Tatsache wird durch die sogenannte Volllaststundenzahl (Formelzeichen T
V) erfasst. Typische Werte liegen auf dem Festland um 1800h , andere Autoren stellen zwar größere Werte von bis zu 2500 h in Aussicht- die durchschnittliche Volllaststundenzahl lag für alle existierenden WKA in Deutschland im Jahr 2012 allerdings nur bei 1500h. Das Jahr hat 8760 h. Die durchschnittliche Leistung einer WKA (Formelzeichen
PWKA) liegt demnach bei
(https://www.vernunftkraft.de/de/wp-content/uploads/2013/06/f1.png)Here as solution : artificial wind chamber ( similar " Compressed Air Engines " )
When we need by conventional wind generator installation 3,3 ha /MWp ~ 33 sqm/KWp and get in average 1500 hours capacity power from 8766 hours the yearand as "wind chamber" we need 60 sqm /100 KWp or 0,6 sqm/KWp and by 8766( x 0,9 ) permanent full capacity work potential
the result per annum a. conventional "on-shore" 1500 KWh/33 sqm = 45,5 KWh/sqm
b. wind chamber (8766 KWh x 0,9)/0,6 sqm = 13 149 KWh/sqm
wind chamber numbers from archive.org /
www.airpower.co.il, israelitan inventor Israel Hirshberg
Melvin Prueitt,Los Alamos scientist and inventor (R.I.P.) " dreamed" about 1 Km high cooling wind towers ,we do not need to think in such hights,even not as translucent,glassy,wall towers !
Btw : Prueitt invented " airpower"- similar concept : he called it "Air-Watt"
https://contest.techbriefs.com/2010/entries/sustainable-technologies/527www.airpower.co.il commercial wind energy exploring costs,10 000 US$/10 KW generator 2004 : 3,4 US$¢/KWh
AirWatt commercial electricity exploring costs estimation 2010 : 3 US$¢/KWh
375 US$/KW estimated AirWatt prototype costs
aveurope.net ,Russia : from wind chamber prototype costs 375 €/KWh windenergy exploring costs calculation : 1 €¢/KWh
https://www.discovermagazine.com/the-sciences/glassy-metals-may-be-materials-of-the-future
Better yet, it can be readily made into a foam. “With most metals that’s difficult, because the bubbles want to rise to the surface of the molten metal,” says Johnson. The fact that amorphous metal is thick and like plastic when molten permits the formation of a foam panel that is 99 percent air but roughly 100 times stronger than polystyrene. A sandwich made of two thin sheets of amorphous metal flanking amorphous foam would be strong, light, insulating, fireproof, bug-proof, rustproof, sound dampening, and difficult to penetrate with bombs. Such panels could form buildings, ship hulls, airplanes, and car bodies.
“Glassy metals will be a cut above both metals and plastics,” says Kang, looking up from a plasma arc melter in which he forges new formulations. Asked if his aim is to replace both—which covers a lot of territory—he smiles. “That’s what we’re shooting for,” he says.
But metallic glass has one huge problem—it’s expensive.
The first commercialized injection-moldable form costs about $15 a pound to make versus roughly $1 a pound for aluminum and 25 cents a pound for steel. Johnson, Kang, and other researchers are working on variants with cheaper constituents. “I think we can make a viable amorphous steel product. I would call that a very likely development,” says Johnson.
Eventually, he says, it could cost the same 25 cents a pound as ordinary steel. “That will change everything,” he says.https://www.hitachi.com/rd/sc/story/amorphous/index.html 3d-liquidmetal-printer : for 1 Euro-Cent/KWh roto-verter and e-generative transformer