Language: 
To browser these website, it's necessary to store cookies on your computer.
The cookies contain no personal information, they are required for program control.
  the storage of cookies while browsing this website, on Login and Register.

GDPR and DSGVO law

Storing Cookies (See : http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm ) help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
https://overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Google Search

Custom Search

Author Topic: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1  (Read 174934 times)

Offline kolbacict

  • Hero Member
  • *****
  • Posts: 679
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #585 on: March 28, 2021, 11:58:58 AM »
I wish him to eat this fish.
Came up with a way to measure the capacity of a Meer cell.
According to the Lissajous curve. I wonder if anyone has done this, or I am the first.  :)
At the same time, you can measure phase shifts, at different frequencies ...

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #586 on: April 03, 2021, 01:34:31 PM »
A really good discussion occurs here! Let me join it! :)
-----------------------------
We (our multinational team) have created 11 (eleven) technology breakthroughs.
-----------------------------
1) Please consider carefully and thoroughly the link below:
https://www.youtube.com/watch?v=aW2ffyvdhjk
-----------------------------
2) The link above describes our first technology breakthrough.
---------------------------
3) The link above describes some simple experiments, which break (a) the law of conservation of mechanical energy and (b) the law of conservation of linear momentum. You can easily carry out these simple experiments in your garage as many times as you want. Any rule/law has its exceptions and there is nothing special, tragic and disturbing in this fact.
---------------------------
4) We (our multinational team) are open to collaboration of mutual benefit (a) for a further perfection and development of our technology breakthroughs and/or (b) for a  production of our technology breakthroughs on a large industrial scale.
---------------------------
5) We would like to ask you to popularize the link above as much as possible in internet (and anywhere else and in any possible way).
---------------------------
Let us push forward together the technology progress!
---------------------------
Looking forward to your answer.
Sincerely yours,
George1

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #587 on: April 05, 2021, 12:14:23 PM »
We (our multinational team) have created 11 (eleven) technology breakthroughs.
-----------------------------
1) Please consider carefully and thoroughly the link below:
https://www.youtube.com/watch?v=xX14NK8GrDY
-----------------------------
2) The link above describes our first technology breakthrough.
---------------------------
3) The link above describes some simple experiments, which break (a) the law of conservation of mechanical energy and (b) the law of conservation of linear momentum. You can easily carry out these simple experiments in your garage as many times as you want. Any rule/law has its exceptions and there is nothing special, tragic and disturbing in this fact.
---------------------------
4) We (our multinational team) are open to collaboration of mutual benefit (a) for a further perfection and development of our technology breakthroughs and/or (b) for a  production of our technology breakthroughs on a large industrial scale.
---------------------------
5) We would like to ask you to popularize the link above as much as possible in internet (and anywhere else and in any possible way).
---------------------------
LET US PUSH FORWARD THE TECHNOLOGY PROGRESS!
---------------------------
Looking forward to your answer.
Sincerely yours,
George1

Offline kolbacict

  • Hero Member
  • *****
  • Posts: 679
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #588 on: April 05, 2021, 07:35:49 PM »
https://www.youtube.com/watch?v=xX14NK8GrDY
video does not play. removed.
p.s. Does this forum have any topics about wind turbines?
p.p.s. The video has already appeared. sorry.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #589 on: April 06, 2021, 02:22:33 PM »
The text below is a slightly modified, shortened and more precise version of our post of March 09, 2021, 02:46:35 PM.
----------------------------
Have a look again at the book "Solved Problems in Physics", 2004, Volume 2, p. 876, solved problem 12.97. The author of this book is Prof. S. L. Srivastava (Ph.D.)
The same book can be found at the link https://books.google.bg/books?id=rrKFzLB9KQ8C&pg=PA876&lpg=PA876&dq=%22electrochemical+equivalent+of+hydrogen%22&source=bl&ots=tQ8PSMLet3&sig=ACfU3U2HOLB78XHl2o3q-JanapzSK-McJA&hl=bg&sa=X&ved=2ahUKEwjDpp2-zZXhAhWT5OAKHUfuBzUQ6AEwBHoECAkQAQ#v=onepage&q=%22electrochemical%20equivalent%20of%20hydrogen%22&f=false
--------------------------
For your convenience I am giving below the text of the problem and its solution.
--------------------------
12.97. In the electrolysis of sulphuric acid solution, 100 mg of hydrogen is liberated in a period of 20 minutes. The resistance of the electrolyte is 0.5 Ohm. Calculate the power consumed. Electrochemical equivalent of hydrogen is 1.044 x 10 -8 kg/C.
SOLUTION.
Prof. S. L. Srivastava's solution is given below.
Prof. S. L. Srivastava's solution consists of two lines only.
LINE 1. Current through the electrolyte is given by I = (m)/(Z x t).
LINE 2. Power consumed = (I) x (I) x (R) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) = 31.86 W.
---------------------------
Prof. S. L. Srivastava stops here his calculations.
(The related solution's set of equations is not given here in order to save time and space. This set of equations however can be found in the book or in the link above.)
--------------------------
WE DEVELOPED FURTHER PROF. SRIVASTAVA'S SOLVED PROBLEM IN A NON-STANDARD MANNER.
OUR FURTHER DEVELOPMENT OF PROF. SRIVASTAVA'S SOLVED PROBLEM LED TO COP > 1.
HERE IS THE ESSENCE OF OUR APPROACH.
--------------------------
1) Let us calculate the inlet energy, that is, inlet energy = (31.86 W) x (1200 s) = 38232 Ws = 38232 J.
2) The Joule's heat, generated in the process of electrolysis is given by
Q = (I) x (I) x (R) x (t) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) x (t) = (31.86 W) x (1200 s) = 38232 Ws = 38232 J = outlet energy 1.
3) HHV of hydrogen is 142 000 000 J/kg. Therefore the heat H, generated by burning/exploding of 0.0001 kg of hydrogen, is given by
H = (HHV) x (m) = (142 000 000) x (0.0001) = 14200 J = outlet energy 2,
where
m = mass of the released hydrogen
HHV = higher heating value oh hydrogen
4) Therefore we can write down the equalities:
4A) outlet energy 1 + outlet energy 2 = 38232 J + 14200 J = 52432 J
4B) inlet energy = 38232 J.
5) Therefore COP is given by
COP = 52432 J/38232 J = 1.37 <=> COP = 1.37 <=> COP > 1.
------------------------------
IMPORTANT NOTE. Constant pure water and cooling agent supply could keep constant the electrolyte's temperature, heat exchange, mass and ohmic resistance, respectively. Besides 0.0001 kg of hydrogen (and the related amount of the already split pure water) is small enough and can be neglected as a factor influencing the electrolyte's temperature, mass and ohmic resisitance.
-----------------------------
And one more interesting fact.
Literally the same solved problem can be found in an old Russian (still from the Soviet times) book "Сборник задач и вопросов по физике", 1986, p. 130, solved example problem 71. The authors of this book are Р. А. Гладкова and Н. И. Кутиловская. In the Russian version the data is a little different, that is, time is 25 minutes, the amount of generated hydrogen is 150 mg, Ohmic resisitance is 0.4 Ohm and the calculated power is 37 W.
Russians also stopped their calculations at 37 W.
Our further development of the Russian version led to the same COP = 1.37, that is, we have again the same COP > 1.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #590 on: April 06, 2021, 02:23:56 PM »
https://www.youtube.com/watch?v=xX14NK8GrDY
----------------------------
The link above clearly shows how a few simple experiments, carried out in your garage, (1) can be the basis for designing of a simple mechanical reactionless drive machine and (2) can solve your personal energy problems (as well as the energy problems of the world as whole).
-----------------------------
Let us popularize the link above as much as possible in internet (and anywhere else and in any other way).
LET US PUSH FORWARD TOGETHER THE TECHNOLOGY PROGRESS!

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #591 on: April 08, 2021, 01:34:21 PM »
The text below is a slightly modified, shortened and more precise version of our post of March 09, 2021, 02:46:35 PM.
----------------------------
Have a look again at the book "Solved Problems in Physics", 2004, Volume 2, p. 876, solved problem 12.97. The author of this book is Prof. S. L. Srivastava (Ph.D.)
The same book can be found at the link https://books.google.bg/books?id=rrKFzLB9KQ8C&pg=PA876&lpg=PA876&dq=%22electrochemical+equivalent+of+hydrogen%22&source=bl&ots=tQ8PSMLet3&sig=ACfU3U2HOLB78XHl2o3q-JanapzSK-McJA&hl=bg&sa=X&ved=2ahUKEwjDpp2-zZXhAhWT5OAKHUfuBzUQ6AEwBHoECAkQAQ#v=onepage&q=%22electrochemical%20equivalent%20of%20hydrogen%22&f=false
--------------------------
For your convenience I am giving below the text of the problem and its solution.
--------------------------
12.97. In the electrolysis of sulphuric acid solution, 100 mg of hydrogen is liberated in a period of 20 minutes. The resistance of the electrolyte is 0.5 Ohm. Calculate the power consumed. Electrochemical equivalent of hydrogen is 1.044 x 10 -8 kg/C.
SOLUTION.
Prof. S. L. Srivastava's solution is given below.
Prof. S. L. Srivastava's solution consists of two lines only.
LINE 1. Current through the electrolyte is given by I = (m)/(Z x t).
LINE 2. Power consumed = (I) x (I) x (R) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) = 31.86 W.
---------------------------
Prof. S. L. Srivastava stops here his calculations.
(The related solution's set of equations is not given here in order to save time and space. This set of equations however can be found in the book or in the link above.)
--------------------------
WE DEVELOPED FURTHER PROF. SRIVASTAVA'S SOLVED PROBLEM IN A NON-STANDARD MANNER.
OUR FURTHER DEVELOPMENT OF PROF. SRIVASTAVA'S SOLVED PROBLEM LED TO COP > 1.
HERE IS THE ESSENCE OF OUR APPROACH.
--------------------------
1) Let us calculate the inlet energy, that is, inlet energy = (31.86 W) x (1200 s) = 38232 Ws = 38232 J.
2) The Joule's heat, generated in the process of electrolysis is given by
Q = (I) x (I) x (R) x (t) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) x (t) = (31.86 W) x (1200 s) = 38232 Ws = 38232 J = outlet energy 1.
3) HHV of hydrogen is 142 000 000 J/kg. Therefore the heat H, generated by burning/exploding of 0.0001 kg of hydrogen, is given by
H = (HHV) x (m) = (142 000 000) x (0.0001) = 14200 J = outlet energy 2,
where
m = mass of the released hydrogen
HHV = higher heating value oh hydrogen
4) Therefore we can write down the equalities:
4A) outlet energy 1 + outlet energy 2 = 38232 J + 14200 J = 52432 J
4B) inlet energy = 38232 J.
5) Therefore COP is given by
COP = 52432 J/38232 J = 1.37 <=> COP = 1.37 <=> COP > 1.
------------------------------
IMPORTANT NOTE. Constant pure water and cooling agent supply could keep constant the electrolyte's temperature, heat exchange, mass and ohmic resistance, respectively. Besides 0.0001 kg of hydrogen (and the related amount of the already split pure water) is small enough and can be neglected as a factor influencing the electrolyte's temperature, mass and ohmic resisitance.
-----------------------------
And one more interesting fact.
Literally the same solved problem can be found in an old Russian (still from the Soviet times) book "Сборник задач и вопросов по физике", 1986, p. 130, solved example problem 71. The authors of this book are Р. А. Гладкова and Н. И. Кутиловская. In the Russian version the data is a little different, that is, time is 25 minutes, the amount of generated hydrogen is 150 mg, Ohmic resisitance is 0.4 Ohm and the calculated power is 37 W.
Russians also stopped their calculations at 37 W.
Our further development of the Russian version led to the same COP = 1.37, that is, we have again the same COP > 1.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #592 on: April 08, 2021, 01:35:58 PM »
EXPERIMENTALLY PROVED reactionless drive and perpetual motion are described in the link below:
https://www.youtube.com/watch?v=xX14NK8GrDY&ab_channel=PeterAxe
The link above describes a few simple reactionless drive and perpetual motion experiments. You can easily carry out these simple experiments in your garage as many times as you want.
Looking forward to your opinions, recommendations, questions.

Offline lota

  • Jr. Member
  • **
  • Posts: 52
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #593 on: April 08, 2021, 06:29:41 PM »

Hello
I have built the sand heating. But still problems with the setback. Catalyst is from the Mercedes w124. After a few minutes, it ignites automatically. The temperature in the catalyst rises very quickly. I will try to grind the catalyst and mix it with sand.
greeting
Lota


Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #594 on: April 10, 2021, 02:10:52 PM »
Hi lota,
Hi dear colleague,
Thank you for your message. Some more details, if possible?
Looking forward to your answer.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #595 on: April 10, 2021, 02:11:17 PM »
The text below is a slightly modified, shortened and more precise version of our post of March 09, 2021, 02:46:35 PM.
----------------------------
Have a look again at the book "Solved Problems in Physics", 2004, Volume 2, p. 876, solved problem 12.97. The author of this book is Prof. S. L. Srivastava (Ph.D.)
The same book can be found at the link https://books.google.bg/books?id=rrKFzLB9KQ8C&pg=PA876&lpg=PA876&dq=%22electrochemical+equivalent+of+hydrogen%22&source=bl&ots=tQ8PSMLet3&sig=ACfU3U2HOLB78XHl2o3q-JanapzSK-McJA&hl=bg&sa=X&ved=2ahUKEwjDpp2-zZXhAhWT5OAKHUfuBzUQ6AEwBHoECAkQAQ#v=onepage&q=%22electrochemical%20equivalent%20of%20hydrogen%22&f=false
--------------------------
For your convenience I am giving below the text of the problem and its solution.
--------------------------
12.97. In the electrolysis of sulphuric acid solution, 100 mg of hydrogen is liberated in a period of 20 minutes. The resistance of the electrolyte is 0.5 Ohm. Calculate the power consumed. Electrochemical equivalent of hydrogen is 1.044 x 10 -8 kg/C.
SOLUTION.
Prof. S. L. Srivastava's solution is given below.
Prof. S. L. Srivastava's solution consists of two lines only.
LINE 1. Current through the electrolyte is given by I = (m)/(Z x t).
LINE 2. Power consumed = (I) x (I) x (R) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) = 31.86 W.
---------------------------
Prof. S. L. Srivastava stops here his calculations.
(The related solution's set of equations is not given here in order to save time and space. This set of equations however can be found in the book or in the link above.)
--------------------------
WE DEVELOPED FURTHER PROF. SRIVASTAVA'S SOLVED PROBLEM IN A NON-STANDARD MANNER.
OUR FURTHER DEVELOPMENT OF PROF. SRIVASTAVA'S SOLVED PROBLEM LED TO COP > 1.
HERE IS THE ESSENCE OF OUR APPROACH.
--------------------------
1) Let us calculate the inlet energy, that is, inlet energy = (31.86 W) x (1200 s) = 38232 Ws = 38232 J.
2) The Joule's heat, generated in the process of electrolysis is given by
Q = (I) x (I) x (R) x (t) =  ((m)/(Z x t)) x ((m)/(Z x t)) x (R) x (t) = (31.86 W) x (1200 s) = 38232 Ws = 38232 J = outlet energy 1.
3) HHV of hydrogen is 142 000 000 J/kg. Therefore the heat H, generated by burning/exploding of 0.0001 kg of hydrogen, is given by
H = (HHV) x (m) = (142 000 000) x (0.0001) = 14200 J = outlet energy 2,
where
m = mass of the released hydrogen
HHV = higher heating value oh hydrogen
4) Therefore we can write down the equalities:
4A) outlet energy 1 + outlet energy 2 = 38232 J + 14200 J = 52432 J
4B) inlet energy = 38232 J.
5) Therefore COP is given by
COP = 52432 J/38232 J = 1.37 <=> COP = 1.37 <=> COP > 1.
------------------------------
IMPORTANT NOTE. Constant pure water and cooling agent supply could keep constant the electrolyte's temperature, heat exchange, mass and ohmic resistance, respectively. Besides 0.0001 kg of hydrogen (and the related amount of the already split pure water) is small enough and can be neglected as a factor influencing the electrolyte's temperature, mass and ohmic resisitance.
-----------------------------
And one more interesting fact.
Literally the same solved problem can be found in an old Russian (still from the Soviet times) book "Сборник задач и вопросов по физике", 1986, p. 130, solved example problem 71. The authors of this book are Р. А. Гладкова and Н. И. Кутиловская. In the Russian version the data is a little different, that is, time is 25 minutes, the amount of generated hydrogen is 150 mg, Ohmic resisitance is 0.4 Ohm and the calculated power is 37 W.
Russians also stopped their calculations at 37 W.
Our further development of the Russian version led to the same COP = 1.37, that is, we have again the same COP > 1.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #596 on: April 10, 2021, 02:11:58 PM »
EXPERIMENTALLY PROVED reactionless drive and perpetual motion are described in the link below:
https://www.youtube.com/watch?v=xX14NK8GrDY&ab_channel=PeterAxe
The link above describes a few simple reactionless drive and perpetual motion experiments. You can easily carry out these simple experiments in your garage as many times as you want.
Looking forward to your comments.

Offline George1

  • Hero Member
  • *****
  • Posts: 884
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #597 on: April 10, 2021, 03:54:44 PM »
Still no comments related to the link below?
https://www.youtube.com/watch?v=xX14NK8GrDY&ab_channel=PeterAxe
--------------------------
What happens here? Where is the new technologies pioneer spirit here in this forum?:)
--------------------------
Looking forward to your answers/comments.


Offline ramset

  • Hero Member
  • *****
  • Posts: 7510
Re: A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1
« Reply #599 on: April 12, 2021, 03:48:41 PM »
Hello
I have built the sand heating. But still problems with the setback. Catalyst is from the Mercedes w124. After a few minutes, it ignites automatically. The temperature in the catalyst rises very quickly. I will try to grind the catalyst and mix it with sand.
greeting
Lota
lota
Here a quick vid/explanation of what Acca is using , and how to harvest it


I suppose as we proceed ( I will also be building ) we can share process for smashing and mixing into sand
Years ago a YouTube group “waterforfuel “ ( or something like that ) had shared some vids on HHO and catalytic reaction , at that time I thought some had analyzed the process for energy audit _power used to heat production _ efficiency...


There is remarkably simple caloric test method to prove this now !


I will be building smallest most efficient Hho cell possible for testing as time permits


https://m.youtube.com/watch?v=_u3WfZa_9ko


Here vid showing where material comes from (go from to 1-2 minute mark , rest of vid is process for harvesting platinum and noble
Metals


Thx
Chet
Ps to OP (original poster George) here
This is not typical to assume you are ok with this discussion in your topic
However seems to be tolerated?


Are you OK with this discussion here?


I will be starting separate topic at other open source forums if this proves viable
(And also here.. separate teaching section)


?