Storing Cookies (See : http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm ) help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
https://overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: Pierre's 170W in 1600W out Looped Very impressive Build continued & moderated  (Read 429905 times)

TinselKoala

  • Hero Member
  • *****
  • Posts: 13958
Quote
problem in the code? does not matter
Well... I agree that the code problem doesn't matter to the final outcome.    :'(

Quote
You can not see it at once.
Anybody with the least little bit of Arduino (or C++ or even BASIC) programming experience can see it right away, simply by counting how long each output stays on.  It should even show up on "oscilloscope" traces.

T-1000

  • Hero Member
  • *****
  • Posts: 1738

That was shared at the beginning of the topic but here it is again.
There is nothing else available.

Regards

Luc

Thanks Luc,

In that scope shot the coil switching is shown on ramp-up in positive and ramp-down on negative cycle. One thing I am not sure about - the coming back to neutral point do not have same spike steps. So my question is - what was happening on that part, was there any capacitor in circuit? If it was and the power generation cut-off was happening that would slope with explain weak noise when going back to neutral point.

Maybe Pierre could elaborate on this?

Cheers!

TinselKoala

  • Hero Member
  • *****
  • Posts: 13958
Thanks Luc,

In that scope shot the coil switching is shown on ramp-up in positive and ramp-down on negative cycle. One thing I am not sure about - the coming back to neutral point do not have same spike steps. So my question is - what was happening on that part, was there any capacitor in circuit? If it was and the power generation cut-off was happening that would slope with explain weak noise when going back to neutral point.

Maybe Pierre could elaborate on this?

Cheers!
I can elaborate on that.

The toy "scope" does not have the bandwidth or the screen resolution to properly display spikes and squarewave transitions. Had Pierre only shown a single cycle or perhaps a half cycle, you would be able to see a little better what is happening. But spikes are disappearing and/or varying in amplitude and the rectangular pulses are not of constant duration on the screen. Some of the variation in duration MAY be caused by the timing irregularity I have pointed out, IF indeed Pierre used that code to make that scopeshot. Apparent variations in pulse timing can also be due to the low screen and ADC resolution of the "scope" even if the pulses are actually quite regular.
You will get nowhere by overinterpreting a bad display of bad data.

There are ways to work around the limitations of the toy instrument. But without the real cooperation of the person operating the "scope" and the apparatus, it's not going to happen. 

jerdee

  • Newbie
  • *
  • Posts: 49

Pierre,

Hope you are doing well and progress is coming along.  I’ve given more thought. You show 6 poles on original stator drawings yet your scope shot shows single phase output.

I’ve recently found a nice video that explains interesting qualities.  The presenter breaks down the control for each phase to get single phase output.  There are many qualities about this video that are similar to your device.

Watch especially at the 4:24 area.
https://youtu.be/ZAY5JInyHXY

I’m building a foundation on learning AC generator basics with only three phases to control.  I know this video is directed towards DC brushless motors, but the presenter shows generator action by applying positive to all three phases at the same time.

This method of control is much simpler.

-You don’t need current in all three phases at the same time. Only two and they are shared.
-You have isolation of each phase. Only one phase is off at a time in rotation.
While the other two phases are opposite polarities.
-You tie all ends of your three phases together on the stator.  This is the neutral point.
-Current can now be shared between different phases at the same time. You’ll increase inductance.

I’m seeing a lot of similarities.  But again, I’m taking time to learn as much as I can in research at this moment on three phase control.

Jerdee


Fr. 
Pierre,

J'espère que vous allez bien et que le progrès avance. J'ai donné plus de réflexion. Vous montrez 6 pôles sur le dessin du stator originaux mais votre scope montre une sortie monophasée.

J'ai récemment trouvé une belle vidéo qui explique des qualités intéressantes. Le présentateur décompose le contrôle de chaque phase pour obtenir une sortie monophasée. Il existe de nombreuses qualités similaires à votre appareil sur cette vidéo.

Regardez surtout à 4:24.
https://youtu.be/ZAY5JInyHXY

Je construis une base sur l'apprentissage des bases du générateur AC avec seulement trois phases à contrôler. Je sais que cette vidéo est dirigée vers les moteurs sans balais à courant continu, mais le présentateur montre l'action du générateur en appliquant positive aux trois phases en même temps.

Cette méthode de contrôle est beaucoup plus simple.

-Vous n'avez pas besoin de courant dans les trois phases en même temps. Seulement deux et ils sont partagés.
-Vous avez l'isolement de chaque phase. Une seule phase est désactivée à la fois en rotation.
Alors que les deux autres phases sont des polarités opposées.
-Vous attachez toutes les extrémités de vos trois phases ensemble sur le stator. C'est le point neutre.
-Current peut maintenant être partagé entre différentes phases en même temps. Vous augmenterez l'inductance.

Je vois beaucoup de similitudes. Mais encore une fois, je prends le temps d'apprendre autant que possible en recherche en ce moment sur le contrôle en trois phases.

Jerdee
« Last Edit: June 12, 2018, 03:24:54 PM by gotoluc »

pedro1

  • Newbie
  • *
  • Posts: 33
Je regarde ça  se soir et je vous refonnerez des nouvelles


En. I will look at it tonight and then give you an update,
« Last Edit: June 12, 2018, 06:26:23 PM by gotoluc »

jerdee

  • Newbie
  • *
  • Posts: 49
En.

Thanks Pierre,

I know you are busy.  Just processing research that is very interesting and seams to follows your work, at least at the moment it is very similar.

The method shown allows ONE out of the THREE phases OFF at any one point in time.  Each OFF position rotates through all phases.  This is the coils RETURN.  Or the inductive kick back. 

The stator has TWO opposite polarity phases at once,  while one phase is off.  TWO powered phases is better than ONE.  This generates a much stronger magnetic field and transfer of flux to the armature.

Still learning.
Jerdee

____________________
Fr.

Merci Pierre,

Je sais que tu es occupé. Il suffit de traiter la recherche qui est très intéressante et qui suit votre travail, du moins pour le moment, c'est très similaire.

La méthode montrée permet à l'UN des TROIS phases d'être OFF à n'importe quel moment. Chaque position OFF tourne à travers toutes les phases. C'est le retour des bobines. Ou le coup de retour inductif.

Le stator a DEUX phases de polarité opposées à la fois, tandis qu'une phase est OFF. Deux phases ON valent mieux qu'une. Ceci génère un champ magnétique beaucoup plus fort et un transfert du flux aux rotor.

Encore à apprendre.
Jerdee
« Last Edit: June 13, 2018, 12:57:29 AM by jerdee »

pedro1

  • Newbie
  • *
  • Posts: 33
Bonsoir jerdee! Oui ils serait mieux d'avoir un triphasere sauf que le lien que vous avez envoyer parle d'un moteur avec un aimant rotatif bien sûr que vous pouvez faire du courant comme cela sauf que mon principe est inverse c'est le champ du stator qui tourne le fait que j'ai mit 6 champ tournant était simplement pour avoir une fréquence plus élevée parceque les relais ne m'aurait pas donner une fréquence assez élevée en mettant 6 champ tournant j'ai multiplier par 3 la fréquence des relais avoir eu des mosfet comme Luc j'aurait pue me permettre seulement 2 pole et j'aurait pue avoir facilement la fréquence désirée et des résultats probablement supérieur à ce que j'ai obtenue car le champ aurait été 3 fois plus fort que 6 champ

En.  Good evening jerdee!  Yes. it would be better to have a tri-phase, except the link you posted is about a motor with a rotating magnet. Of course you can make the current like that, except my principle is the reverse. It's the field of the stator that rotate. The 6 rotating fields was just to have a higher frequency because the relays would not give me a high enough frequency. By having 6 rotating fields it multiplies the relay frequency by 3.  If I would of had some mosfet's like Luc I could of used only 2 poles and could of easily had the desired frequency and probably better results than I obtained because the field would have been 3 times stronger then 6 fields.
« Last Edit: June 13, 2018, 03:44:40 AM by gotoluc »

listener192

  • Sr. Member
  • ****
  • Posts: 272
Finally got back to the starting point. New bridge boards all working. 5 coil 30slot stator.

25V into super cap bank from current limited switched mode DC supply. Bridge boards connected to this rail via 16A circuit breaker.

Adjusted clock for largest output, using the pot control method.

230V 100W bulb used as load.

60uF cap cleans up and maximizes output waveform.
Rotor covers 6 slots and has original generator 2 x 115V windings (in series)

L192


« Last Edit: June 13, 2018, 08:34:56 PM by listener192 »

Jeg

  • Hero Member
  • *****
  • Posts: 1532
Well done L192. Back to testing again. In case you will need sync with mains... http://www.emergingtechs.org/p/zer.html

listener192

  • Sr. Member
  • ****
  • Posts: 272
I should also mention that a test using coils 1-16 (2 poles) resulted in an asymmetric waveform , with less output than the 6 pole arrangement.
This configuration did produce a very large rotational torque which required extra wedging measures to stop the rotor from turning.  You would think the A/Turns developed should have resulted in very large induction.

As a random thought, I am wondering if the expected flux reversals are instead flux level variations. Time to put the flux probe in the stator -rotor air gap and confirm what is actually happening.See  attached.
Flux appears to bi-polar, as center line on the scope is zero flux.


L192   

jerdee

  • Newbie
  • *
  • Posts: 49
Thanks Pierre,

Yes I’m beginning to understand much better now.   A magnet has two poles, which I prefer to call a pole pair.  For a generator to work, you must always have each pole (the north and south) 180º apart.
By increasing pole pairs, you can DECREASE your frequency needed to rotate as well as your number of required relays. 

60 * freq. / 3 Pole Pairs 
 
Can also be represented as:
2 poles * 60 * freq. / 6 Poles

At 3x freq. You can combine 3 norths into one group, and three souths into one group of coils.  This is how I understand your latest posted image. 

Referring to my image for each coil group.  Tie all same numbered wires together.  So 1’s together, 2’s together…etc.. 

For a 6 pole system (3x freq), you have a 36 stator with a 6 coil span.
For a 30 stator we have 5 coil span to maintain 6 poles (3x freq).

If we convert our system to a  1 pole pair system, you are right, we have a MUCH stronger magnetic field. For a 36 stator, this requires a 18 coil span, while 30 stator requires a 15 coil span for each coil!  :)  We would need 30 coils at 15 coil span (width).  This  requires 30 H-Bridges.  While on a 36 stator, this requires 36 H-Bridges.

By increasing frequency and poles you decrease your relays/h-bridges but at the risk of lowering your pole strength.  That is the lesson I'm learning.

Much appreciate your help. Quite the numbers game as I have mentioned. 
Jerdee


Fr.  Merci Pierre,
Oui, je commence à mieux comprendre maintenant. Un aimant a deux pôles, que je préfère appeler une paire de pôles. Pour qu'un générateur fonctionne, vous devez toujours avoir chaque pôle (le nord et le sud) à 180º l'un de l'autre.
En augmentant les paires de pôles, vous pouvez DIMINUER votre fréquence nécessaire à la rotation ainsi que votre nombre de relais requis.

60 * fréquence / 3 paires de poteaux
 
Peut également être représenté comme:
2 pôles * 60 * freq. / 6 pôles

À 3x freq. Vous pouvez combiner 3 nord en un groupe et trois sud en un groupe de spires. C'est ainsi que je comprends votre dernière image postée.

Se référant à mon image pour chaque groupe de bobines. Attachez tous les mêmes fils numérotés ensemble. Donc 1 ensemble, 2 ensemble ... etc.

Pour un système à 6 pôles (3x freq), vous avez un stator de 36 avec une portée de 6 bobines.
Pour un stator de 30 nous avons 5 bobine d'espace pour maintenir 6 pôles (3x freq).

Si nous convertissons notre système en un système à une paire de pôles, vous avez raison, nous avons un champ magnétique BEAUCOUP plus fort. Pour un stator de 36, ceci nécessite une portée de 18 bobines, tandis que 30 stators nécessitent une portée de 15 bobines pour chaque bobine! :) Nous aurions besoin de 30 bobines à 15 bobine d'espace (largeur). Cela nécessite 30 H-ponts. Alors que sur un 36 stator, cela nécessite 36 H-ponts.

En augmentant la fréquence et les pôles, vous diminuez vos relais / ponts h, mais vous risquez de réduire la force de vos pôles. C'est la leçon que j'apprends.

J'apprécie beaucoup votre aide. Tout le jeu des nombres comme je l'ai mentionné.
Jerdee
« Last Edit: June 14, 2018, 12:24:48 AM by gotoluc »

TinselKoala

  • Hero Member
  • *****
  • Posts: 13958
Finally got back to the starting point. New bridge boards all working. 5 coil 30slot stator.

25V into super cap bank from current limited switched mode DC supply. Bridge boards connected to this rail via 16A circuit breaker.

Adjusted clock for largest output, using the pot control method.

230V 100W bulb used as load.

60uF cap cleans up and maximizes output waveform.
Rotor covers 6 slots and has original generator 2 x 115V windings (in series)

L192
You don't elaborate, but going by the filenames of the scopeshots you provided, I see an average INPUT POWER of 432 watts and an average OUTPUT POWER (presumably using the 100W bulb as load) of 6.15 watts.

Is that right?




Hopefully, everybody is beginning to understand much better now.

TinselKoala

  • Hero Member
  • *****
  • Posts: 13958
I should also mention that a test using coils 1-16 (2 poles) resulted in an asymmetric waveform , with less output than the 6 pole arrangement.
This configuration did produce a very large rotational torque which required extra wedging measures to stop the rotor from turning.  You would think the A/Turns developed should have resulted in very large induction.

As a random thought, I am wondering if the expected flux reversals are instead flux level variations. Time to put the flux probe in the stator -rotor air gap and confirm what is actually happening.See  attached.
Flux appears to bi-polar, as center line on the scope is zero flux.


L192   
Nicely done. For those not familiar with ratiometric Hall probes we might say that this will give a signal that goes from 0V to 5V, with 2.5 V being the "zero flux" baseline, and lower voltages indicate flux in one direction and higher voltages in the other direction. So just as you say the gap sensor is indicating a sinusoidally varying flux, just as intended.

However.... could you not also achieve this exact same effect with only two stator coils, on opposite ends of the rotor, with two H-bridges and PWM?  You probably couldn't get to 60Hz this way using relays but you certainly could with electronic switching.

And I'll bet it would be a lot more efficient than the full version, too.

r2fpl

  • Hero Member
  • *****
  • Posts: 744
Nicely done. For those not familiar with ratiometric Hall probes we might say that this will give a signal that goes from 0V to 5V, with 2.5 V being the "zero flux" baseline, and lower voltages indicate flux in one direction and higher voltages in the other direction. So just as you say the gap sensor is indicating a sinusoidally varying flux, just as intended.

However.... could you not also achieve this exact same effect with only two stator coils, on opposite ends of the rotor, with two H-bridges and PWM?  You probably couldn't get to 60Hz this way using relays but you certainly could with electronic switching.

And I'll bet it would be a lot more efficient than the full version, too.

Only 1 coil + H-BRIDGE

old video: https://youtu.be/bE1ilIot8tU

listener192

  • Sr. Member
  • ****
  • Posts: 272
Only 1 coil + H-BRIDGE

old video: https://youtu.be/bE1ilIot8tU
Yes, 1 coil produces a much higher output however, it is just flux linkage as per a transformer.
L192