

A123260


Triangle read by rows: T(n,k) = number of specially labeled bicolored connected graphs with k points in one color class and nk points in the other class . "Special" means there are separate labels 1,2, ...,k and 1,2, ...,nk for the two color classes (n >= 1, k = floor((n+1)/2), ..., n).


4



1, 1, 0, 1, 0, 5, 1, 0, 19, 1, 0, 205, 65, 1, 0, 1795, 211, 1, 0, 36317, 14221, 665, 1, 0, 636331, 106819, 2059, 1, 0, 23679901, 10365005, 778765, 6305, 1, 0, 805351531, 162470155, 5581315, 19171, 1, 0, 56294206205, 26175881341, 2495037197
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


REFERENCES

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.


LINKS

R. W. Robinson, Rows 1 through 30, flattened


EXAMPLE

The first few entries are:
T( 1, 0) = 1
T( 1, 1) = 1
T( 2, 0) = 0
T( 2, 1) = 1
T( 3, 0) = 0
T( 2, 2) = 5
T( 3, 1) = 1
T( 4, 0) = 0
T( 3, 2) = 19
T( 4, 1) = 1
T( 5, 0) = 0
T( 3, 3) = 205
T( 4, 2) = 65
T( 5, 1) = 1
T( 6, 0) = 0
1, 1;
0, 1, 5 ;
0, 1, 19, 205;
0, 1, 65, 1795, 36317;
0, 1, 211, 14221, ,...
0, 1, ....
0,


CROSSREFS

Leading diagonal gives A123281. Cf. A262307.
Sequence in context: A200420 A176324 A081817 * A019113 A289620 A019107
Adjacent sequences: A123257 A123258 A123259 * A123261 A123262 A123263


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, Nov 12 2006


STATUS

approved



