Storing Cookies (See : http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm ) help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
https://overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: Where the OVERUNITY using INDUCTION COILS comes from  (Read 9615 times)


Zephir

  • Sr. Member
  • ****
  • Posts: 381
    • Reddit about Aether Wave Theory
Re: Where the OVERUNITY using INDUCTION COILS comes from
« Reply #1 on: June 23, 2017, 05:31:36 PM »
The answer may depend on whether this coil has ferromagnetic core or not.

antijon

  • Full Member
  • ***
  • Posts: 230
Re: Where the OVERUNITY using INDUCTION COILS comes from
« Reply #2 on: June 25, 2017, 08:35:24 PM »
The answer may depend on whether this coil has ferromagnetic core or not.

What do you mean, Zephir? To avoid hysteresis?

lancaIV

  • elite_member
  • Hero Member
  • ******
  • Posts: 5233
Re: Where the OVERUNITY using INDUCTION COILS comes from
« Reply #3 on: June 26, 2017, 01:56:43 PM »
Watt(average) and Wattpeak and Wattless power ( no-load and low/..../ half/..../full load conditioning):

about peak/average savings by pulse power circuit arrangement :
https://worldwide.espacenet.com/publicationDetails/description?CC=US&NR=5130608A&KC=A&FT=D&ND=3&date=19920714&DB=EPODOC&locale=en_EP

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20130606&DB=EPODOC&locale=en_EP&CC=WO&NR=2012065719A3&KC=A3&ND=4#

about Volt/Ampere/Frequenz-relationship :
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=1&ND=3&adjacent=true&locale=en_EP&FT=D&date=20121011&CC=US&NR=2012256422A1&KC=A1#

    [009   At 1000 rpm2] , Vmax=100 volts, so PWM duty-cycle (Ton)/(Ton+Toff) is essentially zero. Therefore, losses=Imax<2>(RL+Rs)+2 VfImax=(10 amp)<2>(0.25 ohm)+(2 volt)(10 amp), amounting to 45 watts loss. Output power=(Imax)*(Vmax)=(Imax)*(VDC)=(10 amp)(100 volts)=1000 watts. So, generator efficiency at maximum speed and maximum power is about 95% for this example of generator and integrated electronics parameters.

 [0093] At 500 rpm, Imax=(10 amp)/(4)=2.5 amps; and Vmax=(100 volts)*(0.5)=50 volts. So PWM duty-cycle=1⁄2. Average pulse power generated=(Imax)*(Vmax)=(Imax)*(VDC)/2=(2.5 amp)(50 volt)=125 watts. Losses to maintain inductor current=Imax<2>(RL+Rs+Ron)=(2.5 amp)<2>(0.26 ohm)=1.6 watts. Fly-back diode losses=2 Vf*Imax/2=(0.6 v)(2.5 amp)=1.5 watts. So total losses=3.1 watts. Therefore, mid-speed generator efficiency is about 97%.

 [0094] At 100 rpm, Imax=(10 amp)/(100)=0.1 amp; and Vmax=(100 volts)/(10)=10-volts. So PWM duty-cycle= 9/10. Average pulse power generated=(Imax)*(Vmax)=(Imax)*(VDC)/10=(0.1 amp)(10 v)=1 watt. Losses to maintain stator and inductor current=Imax<2>(RL+Rs+2*Rdson)=(0.1 amp)<2>(0.27 ohm)=0.0027-watt. Fly-back diode losses=(2*Vf)*(Imax)/10=(0.6 v)(0.1 a)/5=0.012 watts. So total losses=0.015-watt. Thus, generator efficiency at low speed is about 98%.

                                                              PWM duty-cycle

and the Volt-bank and Ampere-bank connection :
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=5&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160812&CC=DE&NR=202016004514U1&KC=U1#

translated :
http://translationportal.epo.org/emtp/translate/?ACTION=description-retrieval&COUNTRY=DE&ENGINE=google&FORMAT=docdb&KIND=U1&LOCALE=en_EP&NUMBER=202016004514&OPS=ops.epo.org/3.2&SRCLANG=de&TRGLANG=en

lancaIV

  • elite_member
  • Hero Member
  • ******
  • Posts: 5233
Re: Where the OVERUNITY using INDUCTION COILS comes from
« Reply #4 on: June 28, 2017, 10:26:58 AM »
Watt(average) and Wattpeak and Wattless power ( no-load and low/..../ half/..../full load conditioning):

about peak/average savings by pulse power circuit arrangement :
https://worldwide.espacenet.com/publicationDetails/description?CC=US&NR=5130608A&KC=A&FT=D&ND=3&date=19920714&DB=EPODOC&locale=en_EP

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20130606&DB=EPODOC&locale=en_EP&CC=WO&NR=2012065719A3&KC=A3&ND=4#

about Volt/Ampere/Frequenz-relationship :
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=1&ND=3&adjacent=true&locale=en_EP&FT=D&date=20121011&CC=US&NR=2012256422A1&KC=A1#

    [009   At 1000 rpm2] , Vmax=100 volts, so PWM duty-cycle (Ton)/(Ton+Toff) is essentially zero. Therefore, losses=Imax<2>(RL+Rs)+2 VfImax=(10 amp)<2>(0.25 ohm)+(2 volt)(10 amp), amounting to 45 watts loss. Output power=(Imax)*(Vmax)=(Imax)*(VDC)=(10 amp)(100 volts)=1000 watts. So, generator efficiency at maximum speed and maximum power is about 95% for this example of generator and integrated electronics parameters.

 [0093] At 500 rpm, Imax=(10 amp)/(4)=2.5 amps; and Vmax=(100 volts)*(0.5)=50 volts. So PWM duty-cycle=1⁄2. Average pulse power generated=(Imax)*(Vmax)=(Imax)*(VDC)/2=(2.5 amp)(50 volt)=125 watts. Losses to maintain inductor current=Imax<2>(RL+Rs+Ron)=(2.5 amp)<2>(0.26 ohm)=1.6 watts. Fly-back diode losses=2 Vf*Imax/2=(0.6 v)(2.5 amp)=1.5 watts. So total losses=3.1 watts. Therefore, mid-speed generator efficiency is about 97%.

 [0094] At 100 rpm, Imax=(10 amp)/(100)=0.1 amp; and Vmax=(100 volts)/(10)=10-volts. So PWM duty-cycle= 9/10. Average pulse power generated=(Imax)*(Vmax)=(Imax)*(VDC)/10=(0.1 amp)(10 v)=1 watt. Losses to maintain stator and inductor current=Imax<2>(RL+Rs+2*Rdson)=(0.1 amp)<2>(0.27 ohm)=0.0027-watt. Fly-back diode losses=(2*Vf)*(Imax)/10=(0.6 v)(0.1 a)/5=0.012 watts. So total losses=0.015-watt. Thus, generator efficiency at low speed is about 98%.

                                                              PWM duty-cycle

and the Volt-bank and Ampere-bank connection :
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=5&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160812&CC=DE&NR=202016004514U1&KC=U1#

translated :
http://translationportal.epo.org/emtp/translate/?ACTION=description-retrieval&COUNTRY=DE&ENGINE=google&FORMAT=docdb&KIND=U1&LOCALE=en_EP&NUMBER=202016004514&OPS=ops.epo.org/3.2&SRCLANG=de&TRGLANG=en



https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20070716&CC=TW&NR=200727310A&KC=A#
Over 90% no-load consume and more than 25% under load power consume reducement,
                                                                           but no "overunity"
                                                                 but  Power Factor improvement

lancaIV

  • elite_member
  • Hero Member
  • ******
  • Posts: 5233
Re: Where the OVERUNITY using INDUCTION COILS comes from
« Reply #5 on: June 29, 2017, 01:52:55 PM »
a.core saturation (no low high free charge capacity )
b. b-/emf = generatoric/motoric orientation
c. PWM= inrush current phase

wattless/-free "Blind",displacement,dielectric,radiant,cold current

                           same-similar-different :

Tibor Kemeny   www.rexresearch.com/kemeny/kemeny.html


Dr.Pavel Imris  https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=5&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160812&CC=DE&NR=202016004514U1&KC=U1#

A device for an electric drive for electric vehicles, characterized in that in an accumulator (1), in which galvanic cells are connected in series electrically and in a second accumulator (12), in which galvanic cells are electrically connected in parallel and in the first accumulator (4, 5, 10, 11) are connected alternately between the two accumulators (1, 12) and are connected with a band - condenser (6), which is connected in series with the second accumulator (12) Is wound on the magnetic core of a transformer (7) as a primary coil, in which electric energy is converted into a magnetic field, and electric energy induced in the secondary coil (8) is connected to electrical load through electrical terminals (22) as a first half-period.