Storing Cookies (See : http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm ) help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
https://overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: re: energy producing experiments  (Read 145825 times)

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #120 on: October 26, 2018, 03:13:30 AM »
A one meter rod can be made to have a mass of 1 kilogram. One hundred such rods stacked on end on top of each other would have a mass of 100 kilograms. Place this 100 kilograms on one side of a 1900 kilogram Atwood's (950 kilograms on each side of a pulley).
 
The acceleration rate is 9.81 m/sec/sec / 20 = .4905 m/sec/sec.

When the entire stack of rods is dropped only one meter the final velocity of the whole 2000 kilograms would be; .99045 m/sec (d = ½ v²/a). This would be a momentum of 1980.9 units. The single rod at the bottom of the stack could be sent back up to the top of the stack with the consumption of only 44.29 units of momentum. The other 97.76% of the motion can be used to turn an electric generator.

citfta

  • Hero Member
  • *****
  • Posts: 1050
Re: re: energy producing experiments
« Reply #121 on: October 26, 2018, 11:40:59 AM »
If the student on the chair, with barbells, can reduce the radius of the mass to one half then the rate of rotation doubles. This is the increased motion you see; but the linear momentum has remained the same.

You are confusing angular momentum with linear momentum.  They are not the same.  In angular momentum the direction of movement is constantly changing.  Linear momentum is in a straight line.  You are also incorrect when you state the conservation of angular momentum does not work in the lab.  The experiment in the chair proves that is does.

AlienGrey

  • Hero Member
  • *****
  • Posts: 3713
Re: re: energy producing experiments
« Reply #122 on: October 26, 2018, 12:53:20 PM »
Citfa hi can't help but notice as you appear to be a knowledgeable guy who has experience in the zero point
I feel you might already have the knowledge or even a developed device by your comments any chance you can share
anything of interest?

citfta

  • Hero Member
  • *****
  • Posts: 1050
Re: re: energy producing experiments
« Reply #123 on: October 26, 2018, 03:19:15 PM »
Citfa hi can't help but notice as you appear to be a knowledgeable guy who has experience in the zero point
I feel you might already have the knowledge or even a developed device by your comments any chance you can share
anything of interest?

I am probably not nearly as knowledgeable as you think.  But I do have many years of experience working in electronics and on industrial machine tools so I have learned a few things along the way.  I do NOT have an OU device as yet, but I know a couple of guys that are getting close.  I believe they probably already have something working. 


Here is a link to the research and work they have been doing for several years:
http://www.energeticforum.com/renewable-energy/19774-basic-free-energy-device.html



  I also have worked with them on and off over the past 7 or 8 years or so.  I know from our research that it is definitely possible to run a load for much longer using the 3 battery generating system than if you just ran the load directly off of the three batteries.  At least a dozen or so of us have proven that on the bench.  Energy CAN be recycled.  But most of the naysayers on that forum and this one insist that is not true.  They will not take the time to properly set up and run the tests.  You must use reasonable size batteries and keep the current down.  The reason for that is that lead acid batteries do not take a charge quickly very well.  The larger batteries help because they have a lower internal resistance.  This allows them to take the charge easier.  But you will see most people insist on using small batteries and larger loads and then complain the system doesn't work.

Now if you couple the 3 battery system with a super efficient generator you can then go above a COP of one.  I have not gotten to that point yet.  Dave (Turion) has posted publicly that he has a generator that is more than 100% efficient.  But he has had problems with it overheating and is currently in a major project of renovating his old house so it can be sold and remodeling his new house so he can move into it.  So he has no time for research at this time.  He has revealed how to wind the coils to make the generator speed up under load and produce some serious power.  As I posted, he is still having problems with overheating that need to be worked on.


Here is another link to the original thread where you can read about all the effort and years of research we did before we finally decided how to best use the 3 battery generating system:
http://www.energeticforum.com/renewable-energy/10610-3-battery-generating-system.html


Carroll

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #124 on: October 27, 2018, 03:51:52 PM »
If angular momentum conservation in the lab is such a solid law then why does it not have experiments where they measure the mass; they measure the radii; and confirm the speed by other means.

The ballistic pendulum experiments measures the mass of the bullet (steel ball) and the mass of the receiving block (cup). The experimenter only measure the radius to determine rise; and thy confirm the speed by other means. These are real experiments.

The ballistic pendulum can be two pendulums where the incoming mass is also a pendulum bob (such pendulums do exist in the literature). The combined mass of the steel ball and cup will then swing up to indicate the speed of the combined mass. You could use d =1/2v²/a: d = rise a = 9.81 m/sec/sec to determine initial velocity; energy need not come into the experiment.

The incoming pendulum can be much longer than the cup pendulum. The two pendulum lengths become the same when the incoming pendulum string contacts the top of the cup pendulum.

The ballistic pendulum experiment need not be in a vertical plane: it can be done in a horizontal plane. The speed changes would be exactly the same; but of course the cup on a rod would no longer be a pendulum. But the speed could be determined by a photo gate.

There are a large number of videos on the internet that show ballistic pendulums, most are the modern spring gun and cup types. You will not get to far into the video when they tell you that ballistic pendulums conserve linear momentum. Some time they do not mention the word linear; but mv is linear. They never mention radius in the formula so you know it is linear momentum being conserved.

'Linear momentum' when the combined mass is moving in a circle. These experimenters do not believe that linear means a straight line. Because the final momentum is not in a straight line.

The energy of the steel ball is not conserved; typical 80% or more is lost.

Angular momentum is not even mentioned in ballistic pendulums. You could easily construct a collision between pendulums of different lengths. But this would prove that angular momentum conservation is false (in the lab) so this experiment is never done. The non-experiments of chairs and skaters has caused a mind block that delayed the advancement of knowledge.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #125 on: December 21, 2019, 03:50:13 AM »
To make free energy from gravity you need to utilize two simple machines. We use the Atwood's    https://www.youtube.com/watch?v=4ovhEkSIqV0    to increase the quantity of momentum; this is done by increasing the quantity of time over which the force acts. This momentum is then transferred to a small object by using the despin event as seen in a satellite despin procedure   https://www.youtube.com/watch?v=uMQnXig2hrg     and in the double despin cylinder and spheres machine   https://www.youtube.com/watch?v=YaUmzekdxTQ.      Or     https://www.youtube.com/watch?v=KgT70vSIUgA

https://www.youtube.com/watch?v=w-7d66JscI8     

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #126 on: December 22, 2019, 03:43:05 AM »
I set up an Atwood's machine that has two pulley radii on the same rotational shaft. The one radius is 10 .035 mm; half of the  20.07 mm shaft diameter.  The second radius is a wheel on the shaft with a radius of 97.2 mm.   97.195 mm / 10.035 mm =  9.6856

A 650 gram mass suspended on the shaft could be balanced with 68 grams suspended on the wheel.

I placed 650 grams on both ends of a string and draped it over the shaft. I accelerated this Atwood's arrangement with a certain mass on the shaft and had it trip a photo gate after one rotation. The average trip time of the photo gate was .0433 seconds.

I placed 68 grams on both ends of a string and draped the string over the wheel. I accelerated this same Atwood's with the same certain mass on the shaft and arranged it to trip the same photo gate, in the same manner, after one rotation. The average trip time of the photo gate was .04325 seconds.

This proves that a two radius Atwood's produces an F = ma outcome; as long as the longer radius has a proportionally smaller mass.  The 68 grams is moving 9.68 time faster than the 650 grams.  They have about the same momentum .068 kg times 9.68 is roughly equals to .650 kg times 1.

The two Atwood's arrangements do not produce the same quantity of energy: .068 kg at 9.68 has about 10 times as much energy as .650 kg at 1. But they had the same input energy.

Atwood's can make energy. 

sm0ky2

  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #127 on: December 22, 2019, 04:58:35 AM »
They did not have the same input energy.
One had a larger mass to be initially accelerated.


What was this quantity of “ input energy”?


Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #128 on: December 23, 2019, 02:23:33 PM »
The quantity of mass being accelerated has nothing to do with the input energy.

The Atwood’s was accelerated by the same mass suspended from the shaft. It was only about 62 grams.  The photo gate recorded a little less than one rotation. The flag was released just after the 2nd trip gate and it came around one rotation. So the 62 grams dropped (20.07 mm * pi) * 9.81 N/kg = .038 joule for input energy.

The same mass was used to accelerate the two 68 gram masses and the two 650 gram masses.  But the exact quantity of input force is not important; because the motion of the system without the added masses is the same for both the 136 grams and the 1300 grams.

The quantity of force needed to overcome bearing friction would be the same for both the 136 gram run and the 1300 gram run.

The quantity of force needed to set the shaft and wheel in motion (to .75 RPS) would be the same for both the 136 gram run and the 1300 gram run.

The quantity of force remaining to set the 136 grams, on the wheel, in motion would be the same as the quantity of force remaining to set the 1300 grams, at the shaft, in motion.

This remaining force accelerates the 1300 grams to .04769 m/sec. Or this same force accelerate 136 grams to .46189 m/sec. The 1.300 kg has .001478 joules of energy; and the .136 kg has .0145 joules of energy.  ½ mv²

.0145 J / .00148 J = 9.814 times as must energy for this portion of the Atwood's.

The quantity of momentum is the same 1.300 kg * .0477 m/sec = .062101 units:    .136 kg * .46189 m/sec = .06281 units of momentum     .06281 /.062101 = 1.01

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #129 on: December 31, 2019, 10:06:53 PM »
Take a one meter tube and mount a quality bearing on one end: arrange it so that the tube rotates in a vertical plane. We will start from a horizontal position for the tube.

We place a force gauge at one decimeter from the point of rotation: the gauge reads a downward force.

The experimenter then places 10 kg at the one decimeter position. The scale or force gauge will read 10 kilograms or 98.1 newtons.

The experimenter then removes the ten kilograms and places a one kilogram mass at the 10 decimeter position. The scale or force gauge will read 10 kilograms or 98.1 newtons. The lever arm multiplies the force at the 1 decimeter position.

Now lets place the bearing and tube into a horizontal plane; and place it just above a frictionless plane so that the masses rest on the frictionless plane. In this arrangement gravity no longer has any affect upon the system; the tube is now rotating in a horizontal plane. The one and ten kilogram masses no longer exert force they only have inertia.

Now lets place ten kilograms of mass at the one decimeter position. Now lets apply ten newtons of force, in a clockwise direction, at the one decimeter position. After one second the ten kilograms will be moving 1 meter per second. 

Now lets place a one kilogram mass at the ten decimeter position. Then lets apply ten newtons of force in a clockwise direction at the one decimeter position.   After one second the one decimeter position will be moving 1 meter per second. The inertia of the one kilogram mass has been multiplied by ten at the one decimeter position just as the force had been multiplied by ten in the vertical experiment above. After one second the ten decimeter position will be moving 10 meter per second.

A 10 kilogram mass moving 1 meter per second has 5 joules of energy and a 1 kilogram mass moving 10 m/sec has 50 joules. But the same amount of force * time can be used to make 5 or 50 joules.

Conclusion: It takes the same amount of force to rotate a tube having different quantities of inertia along the length of the tube: as long as the length of the radius of rotation is inversely proportion to the differing quantities of inertia.

Example: ten kilograms at one decimeter rotates as easily as one kilogram at ten decimeters;

An experimental proof: is that an Atwood's finds it no more difficult to accelerate 136 grams at a 97.195 mm radius than it does to accelerate 1300 grams at 10.035 mm. And the 136 grams has 9.81 times as much energy as the 1300 grams.

Any suggestions on a corporation that would like to make use of this?

sm0ky2

  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #130 on: January 01, 2020, 05:00:45 AM »
Take a 10 N motor and set up your machine.
then use another motor as a generator.
You can then go off-grid and use your monthly
electric bill to finance your advertising campaign

magneat

  • Newbie
  • *
  • Posts: 21
Re: re: energy producing experiments
« Reply #131 on: January 01, 2020, 10:06:07 AM »

https://www.youtube.com/watch?v=dq5jbPoE_Cc


http://hopsblog-hop.blogspot.com/2013/10/what-about-mr-oberth.html
"...So accelerating a mass already moving fast gives you more kinetic energy for your buck..."


magneat

  • Newbie
  • *
  • Posts: 21
Re: re: energy producing experiments
« Reply #133 on: January 01, 2020, 08:27:17 PM »

sm0ky2, thanks for the books.
I just don’t understand what they have to do with Oberth Effect.  :)
experience from the video shows the manifestation of the Oberth Effect.

sm0ky2

  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #134 on: January 02, 2020, 03:11:34 AM »
sm0ky2, thanks for the books.
I just don’t understand what they have to do with Oberth Effect.  :)
experience from the video shows the manifestation of the Oberth Effect.


Actually that was for Delburt


Oberth has a much more efficient way to accelerate a rocket than straight up
Not sure what that has to do with energy production. Just less waste.