Storing Cookies (See : http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm ) help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
https://overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: re: energy producing experiments  (Read 145846 times)

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #105 on: August 09, 2018, 03:17:35 AM »
We know that kinetic energy is not conserved in motion alone. Kinetic energy allegedly gives off heat when small objects strike large object. This excuse of heat is negated in this experiment because there is no motion loss when a small sphere interact with a larger cylinder (twice).

If energy were conserved when the cylinder gives its motion to the spheres only a fraction of the motion would be contained by the spheres. The motion would not be available to return all the motion back to the cylinder and spheres combo. It would actually take 18 frames to cross the black square in this experiment; if energy were conserved. 

The crossing of the black square in four frames at the beginning; middle; and end: is consistent with Newtonian Momentum Conservation. And the energy increase is about 450%. But this 450%  is very small compared to other arrangements.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #106 on: August 19, 2018, 03:42:42 AM »
A 305 gram mass moving 5.02 m/sec will combine its motion with a 972 gram mass at rest; the combined mass of 1277 grams will be moving 1.2 m/sec. This is not a debatable statement: it is the Law of Conservation of Momentum. If you know the velocity of the combined mass you then know the velocity of the incoming small mass.
 
You can count the frames as the black square crosses from side to side (four). By measuring the velocity of the spinning cylinder (1.2 m/sec) we then also know the velocity of the spheres (5.02 m/sec); when they contain all the motion.
 
The energy of the larger combined mass is .919 joules: the energy of the spheres is 3.85 joules. The energy increase is proportional to the mass difference.   1277 g / 305 g = 3.85 J / .919 J
 
This event has no mass limit; the sphere could have a mass of 305 metric tons. The mass difference can be very large; the spinning wheel mass could be 30,500 metric tons. A tower of dropping masses can increase the time over which the force acts; the energy increase would be 10,000%. The 305 tons can be throw up ever two seconds; and then output would be measured in megawatt-hours.
 
The output: construction cost; and maintenance, would be similar to a hydroelectric plant.

http://hyperphysics.phy-astr.gsu.edu/hbase/balpen.html

Note the word 'inaccessible'. The energy is inaccessible; it cannot come back. The motion energy would disappear: it is inaccessible.

But the experiments show that there is no loss of motion. Energy conservation is a false concept.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #107 on: October 17, 2018, 10:54:43 PM »
Accelerate a bar so that it is moving perpendicular to its length. Accelerate the bar to 1 m/sec and then catch it on the end so that it must rotate around one of its ends. When the bar starts rotating on one end the center of mass will continue at the same speed; in this case 1 m/sec.
 
When the center of mass continues at the same speed the energy of the bar increases to 133%. For energy to remain the same (when the rotation starts) the speed of the center of mass would have to decrease by 13.4%. The fact that the speed of the center of mass does not decrease means that energy is not a conserved quantity.
 
Momentum conservation always overrules energy conservation in real experiments.

F6FLT

  • Sr. Member
  • ****
  • Posts: 394
Re: re: energy producing experiments
« Reply #108 on: October 18, 2018, 09:47:12 AM »
A 305 gram mass moving 5.02 m/sec will combine its motion with a 972 gram mass at rest; the combined mass of 1277 grams will be moving 1.2 m/sec. This is not a debatable statement: it is the Law of Conservation of Momentum. ...

You can't combine the momentum or kinetic energy of separate parts to have that of the whole. The analysis of the law of conservation must be made in the same referential frame, preferably an inertial frame, and the speed applies to the center of mass. Energy/momentum depend on the referential.

https://www.youtube.com/watch?v=8Q7L2BOYkjE
...
I see nothing else than energy and momentum conservation.

What makes you think that the potential energy of the cylinder that is used when falling to feed the movements of the ball would be less than the energy acquired by the ball?

« Last Edit: October 18, 2018, 11:49:52 AM by F6FLT »

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #109 on: October 19, 2018, 01:04:28 AM »
Is the frame an excuse? Is the frame something used by the smart people; to explain why the rest of us don't understand things that are perfectly simple. F = ma is perfectly simple; I see no need for it to be framed.

The problem with Q7L2BOYkjE is that the cylinder is still accelerating toward the ground. But I think we could take a snap shot in time where the cylinder is stopped; both in rotation and in falling: and at that point the sphere has all the momentum and or energy. So what is conserved all the momentum or all the energy; does it have all the mv or all the 1/2mv²? The proof of which one of the two is conserved comes from another experiment: the double despin     https://www.youtube.com/watch?reload=9&v=YaUmzekdxTQ

At two points all the rotational motion is in the spheres and (twice) the spheres give all the motion back. Two small masses restart a much larger mass: experiments prove that only linear Newtonian momentum is conserved when small masses give their motion to larger masses.

In the Dawn mission yo-yo de-spin; three kilograms stops the rotational motion of 1420 kilograms. If the initial average speed was one meter per second then the initial momentum around the arc of the circle was 1420 units.  When the rotation of the satellite was stopped the spheres had 1420 units of momentum; or 473.3 for each kilogram; requiring a velocity of 473.3 m/sec.
 
For ½mv² to be conserved the initial energy of 710 joules would require that the three kilograms would have a velocity of 21.755 m/sec. But then the 65.27 (3kg * 21.755 m/sec) units of momentum would have to restore the 1420 units if the weighted cables were left attached; as in the double despin.

By restoring the rotational motion; after the weighted string are left attached, the double despin proves that unlimited quantities of energy can be made from gravitation.

F6FLT

  • Sr. Member
  • ****
  • Posts: 394
Re: re: energy producing experiments
« Reply #110 on: October 19, 2018, 10:35:18 AM »
Is the frame an excuse? Is the frame something used by the smart people; to explain why the rest of us don't understand things that are perfectly simple. F = ma is perfectly simple; I see no need for it to be framed.

F = ma is "perfectly simple" but false if you use it outside its domain of application.
 
It is false when m is not constant, you must use F=dp/dt instead where p is the momentum.
It is false when relativistic effects cannot be neglected (therefore surely when we consider currents of electrons).
It is false when you measure "a" in a referential and F in another one.
It is false in general: you forgot that F and a are vectors, not scalar.

The two last points are the reasons why your analysis is as wrong as your calculations.
It is not enough to keep the simplest equation because we understand it, to make correct calculations. Physics is not "perfectly simple".

The "perfectly simple" principle that the analysis by the lagrangian of the system is equivalent to the analysis by the forces rules out the possibility of extra energy for purely logical reasons. Hoping to defeat the laws of physics by using the laws of physics is childish because they are internally consistent, it's like searching for a particular case "n" where n+1 would be different from n+1.

I have a reluctance to let things I consider false be said, and in this case I explain why I consider them false, it can help to get out of ignorance as I myself have benefited from others.
That said, I do not prevent anyone from wanting to live in ignorance or illusion.
I even hope that I will be shown that I am the one who lives in illusion, it is enough that those who show illogicality in their analysis of a mechanical system are nevertheless able to build a working looped machine.
So far, I have read hundreds of their claims, but I have not observed the slightest working machine created by their minds.


Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #111 on: October 19, 2018, 10:47:44 PM »
F = ma:       Acceleration (a) is equal to the change in velocity over the change in time v/t.  Therefore: Ft = mv.  And mv is a conserved quantity and unabated.
 
Most of those confused about vectors think a spinning rim has no momentum: because each quantity of mass has an equal quantity of mass on the other side moving in the opposite direction. But in fact all the mass is moving in the same ‘vector’ direction.
 
A ten kilogram rim spinning at 3 meters per second, around the arc of the circle, has 30 units of momentum. Proof of this statement can be obtained by wrapping the spinning rim with a string weighted with a 10 kilogram mass floated on dry ice.
When the string comes taut the 10 kg rim will jerk the 10 kg on dry ice to a velocity of 1.5 m/sec. The 10 kilograms on dry ice will have 15 units of momentum and the rim will still have an arc velocity of 1.5 m/sec. The 1.5 m/sec is half the original velocity of the rim: so half the original velocity of the rim is equal to 15 units of momentum. So the original momentum of the rim was 30 units of momentum.

Furthermore: 20 kilograms (the rim and the block on ice) moving 1.5 m/sec is 22.5 joules of energy. But the 10 kilogram rim had an original energy of 45 joule. You cannot claim a 50% loss of heat energy because the despin cylinder and spheres machines move back and forth: in this case 22.5 J to 45 J and then 45 J to 22.5 J

So this simple experiment proves that a spinning rim has momentum and that the Law of Conservation of Energy is false.

Actually it can get simpler than the rim. Do you remember what the governor of an antique steam engine looks like? It is two counter balance spheres. If you released one sphere and then the other a half rotation later the true momentum of the two spheres would be seen.  But the linear momentum they have after release is the same as the momentum they had before release.
 
The portion of the machine that produces energy (despin technologies) is the only important part; because the other half of the loop is a chain draped over a pulley. 


I have experiments that make energy: that should end all the illusions.    

F6FLT

  • Sr. Member
  • ****
  • Posts: 394
Re: re: energy producing experiments
« Reply #112 on: October 21, 2018, 10:22:06 PM »
F = ma:       Acceleration (a) is equal to the change in velocity over the change in time v/t.  Therefore: Ft = mv.  And mv is a conserved quantity and unabated.
...
Not right. Mv is not necessarily conserved. An accelerating rocket expels its mass of fuel. mv is not a conserved quantity if you look only at the rocket.
The conservation requires that m is the total mass (current rocket mass + expelled mass), and v the speed of the center of mass of the whole, not the speed of the rocket.
The ball is a moving object relative to the cylinder as the expelled fuel relative to the accelerating rocket. You have to consider the whole system cylinder+ball, to calculate where is the center of mass and its speed, it's the only way to prove that mv wouldn't be conserved, otherwise your conclusions are simply irrelevant.



Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #113 on: October 22, 2018, 10:46:47 PM »
The chemical energy of the fuel is used as an outside force.  This force changes the momentum of the burnt fuel mass; and that change in momentum is equal to the momentum change of the mass of the rocket (Newton’s Third Law of motion). It is never that the kinetic energy change in the exhaust fuel mass is equal to the kinetic energy change in the rocket mass. Energy is not conserved it is always momentum conservation. Yet when NASA predicts the velocity of the thrown masses in the Dawn Mission they predict energy conservation. Apparently NASA is not familiar with the universality of a universal law: Newton’s Third Law.
 
When the spinning Dawn Mission satellite loses 1420 units of momentum: the thrown masses gain those 1420 units of momentum; Newton’s Third Law.
 
There is no outside force applied to the despin of the Dawn Mission satellite. But there has to be an internal force within the closed system that changes the spin of the satellite from 48 RPM to zero RPM. That force is in the cable that causes equal changes in the (spinning) momentum of the satellite and the momentum of the thrown masses. Absolute proof that it is Linear Newtonian Momentum Conservation is achieved when the Double despin experiment returns all the spinning motion back to the cylinder.

Ballistic pendulums prove that small object can only deliver their linear Newtonian momentum to a larger object.  The bullet energy is not conserved in ballistic pendulum experiments.

F6FLT

  • Sr. Member
  • ****
  • Posts: 394
Re: re: energy producing experiments
« Reply #114 on: October 23, 2018, 10:50:29 AM »
Statements not supported by evidence. Misinterpretations of elementary physics, outside of any science.
Incantations of ignorance, as irrefutable as any religious dogma.
I see nothing here to discuss that would be compatible with reason and rationality.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #115 on: October 23, 2018, 11:04:35 AM »
Just experiments that make energy.

citfta

  • Hero Member
  • *****
  • Posts: 1050
Re: re: energy producing experiments
« Reply #116 on: October 23, 2018, 04:55:39 PM »
What is being ignored in the videos is the conservation of angular momentum.  I studied that many years ago in college physics.  What I am talking about is the same principle used by figure skaters to increase their spin rate to a high speed and then stop spinning very quickly.  A large slow spinning object will increase greatly in rpm if the mass can be brought closer to the center of rotation.

A simple and fun experiment will demonstrate this.  Find a chair like an office chair that has good bearings so that it will spin easily.  Sit in the chair with your arms and legs extended out as far as you can get them.  Now have someone give you a good spin.  While spinning, pull your arms and legs in as close as you can to your body.  You will feel the chair speed up in rotation.  When you extend your arms and legs again you will feel the chair slow back down.  If the bearings are really good in the chair you should be able to again retract your arms and legs and again feel the chair speed back up.  You can repeat these motions until the drag of the bearings and wind resistance slows you down.

There is no extra energy gained but this is an interesting example of the conservation of angular momentum.  I don't remember the formula for calculating it but I am pretty sure there was one we used when doing the experiments.

Carroll

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #117 on: October 24, 2018, 03:35:44 AM »
The formula for angular momentum (L) can be found in Wikipedia; L = r mv where r is the radius of rotation (sometimes called the moment arm) and mv is of course Linear momentum.

The formula in Wikipedia is just to the left of the vector diagram window.

This formula can be checked by applying it to the appropriate place for which it was invented: planets comets and other satellites. You take the product of the long radius and the slow speed (mv) of Haley's comet at apogee; and compare it to the product of the  smaller radius and fast speed of the comet at perigee; and those numbers will be the same. This is conservation of angular momentum.

The speed change of the comet  is caused by gravity. But gravity does not cause this kind of change in the laboratory.  Gravity does not increase the speed of the barbells as the student; spinning on the chair; pulls them in. Then why does angular momentum conservation work in the laboratory? Well it doesn't. There will be an increase in rotational speed because the radius of rotation has decrease but the new speed will not fit Kepler's formula for satellites.

You will never see; in common use; an angular momentum conservation experiment conducted where the experimenter carefully measures the changing radii of the rotating mass. An experiment that is done well will be ignored by your professors. And the results scorned by the same professors.

One good example of this is Galileo's pendulum conducted over 300 years ago. Galileo used pins to interrupt the string of a simple pendulum in the down swing position; and the radius of rotation changes. The mv of the long and short pendulum sides is the same at the down swing so the changed radius changes the angular momentum. Thus angular momentum is not conserved.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #118 on: October 24, 2018, 11:52:06 PM »
Let’s look at a despin experiment where the cylinder is stopped. In this experiment the attach spheres are 500 grams each and the cylinder; that is at rotational rest; has a mass of 10 kilograms. The radius of rotation of the spheres are 24 times that of the cylinder (cylinder r = 1.75 inches, 4.445 cm). The spheres are moving 1 m/sec; at a radius of 24 times that of the cylinder (42 inches, 106.68 cm); when the cylinder is stopped.
 
The original angular momentum is therefore 1.0668. If the spheres were to wind around the cylinder and draw into the same radius then you would have 11 kilograms all moving at v meters per second: so that 11kg * v m/sec * .04445 m = 1.0668.  That would leave us with a linear velocity of 2.1818 m/sec. for the entire 11 kilogram system.  So angular momentum conservation would require that 1 unit of linear momentum would produce 24 units of linear momentum. This production of 24 units of linear momentum from 1 is a clear impossibility. In any closed system (no application of outside force) the linear momentum always remains the same.  Angular momentum conservation does not work in the lab. 
 
Another proof would be to place an immovable post in the middle of a frictionless plane; have a puck on the end of a string wind or unwind from the post. The radius of the rotating puck would be constantly changing but the linear Newtonian velocity of the puck would remain constant. As the puck rotates the radius would shorted (or length if unwinding) for each orbit of the post. An infinite number of radii would multiple the same linear momentum (L = r mv); for an infinite number of angular momentum.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #119 on: October 25, 2018, 02:54:39 AM »
If the student on the chair, with barbells, can reduce the radius of the mass to one half then the rate of rotation doubles. This is the increased motion you see; but the linear momentum has remained the same.