Storing Cookies (See : ) help us to bring you our services at . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
If you do not agree with storing cookies, please LEAVE this website now. From the 25th of May 2018, every existing user has to accept the GDPR agreement at first login. If a user is unwilling to accept the GDPR, he should email us and request to erase his account. Many thanks for your understanding

User Menu

Custom Search

Author Topic: re: energy producing experiments  (Read 150078 times)


  • Hero Member
  • *****
  • Posts: 898
Re: re: energy producing experiments
« Reply #15 on: February 13, 2017, 02:09:44 AM »
oh, I have to apologize .
"earn" is the wrong word.. i fell back into my german thinkig. Of course I mean gaining energy.

As I said the topic was fully discussed in the above mentioned thread, you can go there and reread all post there.

My, telecom and smOky2 questions are related to the practical technical means of energy extraction that is what concept of a machine could be developed for this principle.
More than 8 years have passed and still no solution found

Are you serious in telling the community here that throwing this set-up in the air is a practical way to extract energy ?

I even posted a solution in reply #109 here:

The problem of energy-extraction was recognized back then and obviously could not be solved ....after 8 years



  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #16 on: February 13, 2017, 04:49:32 AM »
For me there is no "question", more so I was attempting to
describe the situation from a physics standpoint.
But apparently physics and mathematics fall to the wayside
When it comes to digitized frame rate of an unscaled distance
Judged by a visual interpretation of a recording.

The cylinders and spheres is an elementary physics lab
Generally covered in the first two years of engineering
Bachelors degrees. This is a simple experiment, and all
Energies and momentii can be accounted for, both physically
And mathematically.

But hey who am I?
This guy says he "created energy"
And his camera frame rate proves it!!

Maybe he can figure out how to get the energy out.....

All I saw from the video was Mr hand putting way more momentum into
The cylinder that the balls were able to overcome in the time it was airborn
You can clearly see the momentum transfer to the cylinder when the balls
Impact the side at 90-degrees.
If you don't think this occurs......
Hold the strings in your hands and spin
Then stop spinnning

Make a fist so it's 'round' like the cylinder
Or hold your hands down at your side so your
Hips act like the cylinder

Tell me what happens when the balls run out of string
But are still moving.

Remember TeatherBall?
When the balls gets wrapped it smacks the pole!
Make a big noise and the pole vibrates.
The same thing happens to the pvc, except it is free
to move from the collision.
A steel cylinder will behave slightly different than the pvc

The inertia from the collision is what determines how much
energy is transferred to the cylinder and the how much reflects
With the ball.
Steel vs pvc is not fully elastic, nor is it a fully inelastic collision
But contains properties of both in different degrees, based on the
Materials properties.
Pvc is fairly rigid, but it flexes, bends and heats up more so than
Two pieces of stainless colliding.
Steel pretty much just bounces off like the balls on a pool table

Two masses of same weight steel ball and pvc ball
You can compare to steel vs steel and visibly see this

The two steel balls will behave just as the pool que and a ball.
The pvc collision will absorb some of the energy and both balls
will roll differently

But changing your materials will not change your experiment
The balls and cylinder have two momentums
First being thrown in the direction of travel, this is a linear momentum
Second is the rotational momentum from the twisting action
These two fight each other through the whole experiment
Because their vectors are different.
The linear momentum, being of greater magnitude, is dominant.


  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #17 on: February 13, 2017, 05:13:05 AM »
The momentum transferred to the cylinder, mostly goes back into the balls
Some is transferred. But each ball cancels out the other ball in this regards
In fact, if you fix the lengths of your strings so they are equal-----
Such that both balls hit at the same time.
None of the momentum will be transferred to the cylinder
(Except the flexing factor of the materials)
And both balls will repel 180-degrees from the collision
With almost all of the momentum they had when they ran
Out of string.
But again this is in a vector opposing the forward momentum
Of the entire device.


  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #18 on: February 13, 2017, 05:17:30 AM »
If you want to really perform this experiment in the way
You propose:
Perhaps a turntable or stationary rotatable accommodation
Could get rid of the forward toss that prohibits a full examination
Of the forces the balls impose to the cylinder
Of course the cylinder should not be attached to the turntable
So that it may freely respond to changes in velocity in almost every
Available vector.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #19 on: February 14, 2017, 01:34:36 AM »
You seem to be focusing on the last few frames of the experiment. Here the cylinder is moving 20 mm in four frames and we can leave it at that. I record maximum speed for the cylinder of 4 frames per 20 mm right at what you think is a glance. If the sphere and cylinder touch they are moving at the same speed. But the experiment is over at this point.

Maximum energy was achieved about .066 sec before the glance you see. And this is the second time maximum energy is achieved.

The cylinder is stopped 16/240 seconds after release: here the spheres have all the motion. This is where the energy of the system is highest. Most cylinder and spheres experiments do not proceed past this point.

The end frames confirm that all the motion is maintained throughout the experiment. And only linear momentum can be maintained throughout. Because linear momentum is the only thing a ballistic pendulum conserves.

The fist and tether ball are not similar experiments. The fist and steel post are not at liberty to rotate. When the sphere comes close to the cylinder at the end of the experiment both the cylinder and the spheres are moving at the same speed; just like they were at the beginning of the experiment.

All you need to do to extract the energy is point the motion up and cut the string.

Lets make a small machine to see what it looks like.

A one kilogram mass will proceed up 25 meters if it has a velocity of 22.15 m/sec. D = ½ v²/a

This is 22.15 units of momentum.

Make a 25 meter string with 1 kilogram at each meter of length: except there is no mass on one end. Place the string vertically with a one kilogram mass at the top. That would leave you with no mass on the bottom of the string. When the string is lowered one meter that would leave you with one kilogram on the bottom; and a kilogram mass at each meter length in between and no mass at the top.

To restore the one kilogram to the top would require that you accelerate the bottom kilogram to 22.15 m/sec and point the motion up and cut the string.

Place this 25 kilogram string on an Atwood with a balanced mass of 97.67 kilograms; That would be 25 kilograms accelerating 122.669 kilograms for an acceleration rate of 25/122.669 * 9.81 m/sec/sec = 2 m/sec/sec.

After a drop of one meter the entire mass of 122.669 kg would be moving 2 m/sec. From d = ½ v²/a

That is 122.669 kg * 2 m/sec = 245.338 units of momentum.

Place all this momentum in the bottom one kilogram using the cylinder and spheres and it will rise 3067.8 meters, actually air resistance would prevent that much rise but you have vastly more than enough motion to restore the one kilogram at the bottom of the string back up to the top of the string.


  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #20 on: February 14, 2017, 07:22:10 AM »
Well yes it is exactly like you say
Except for the part about the mass
And the string
And the momentum
25kg moving at 2m/s is going almost straight down
Not up. It will not be moving fast enough to put tension
On the string of 25 meters long
In the earths gravitational field.

Much different than your hand-tossed pipe-toy

You are confused
And this is observable in your descriptions

Taking the linear transform of angular momentum
You must include the vector
Non-parallel vectors subtract from one another
Leaving only difference, at the new vector.

I am focusing on the entire 5 seconds of fussy video
In your original post.

The cylinder is still rotating as it is released. (2s)
There is an angular momentum and associated
Angular velocity, as visible by the markings on
The pvc.
There is also a linear momentum of the system
As visible by the trajectory of the entire apparatus
Two Separate values, two different operations
Let's ignore the linear momentum for now
Even though it is far greater than any other momentum
In this system.
Let us focus on the rotational momentum
As the strings unwind, tension is placed on the strings
As a result of the (vector variant) angular momentum of each ball
At that moment, (2.8-2.9s on vid) the strings are at their maximum
Length. And as such are following their largest radius, and coincidentally
Traveling at their lowest velocity. Angular momentum at this point is
Subtracting from both the cylinder and the balls. Both balls combined
Are providing the torque on the strings which slows the cylinder and
Causes it to reverse directions.
The momentum of the balls (each) are subtracted by half of the total
Cylinder momentum that the cylinder had at (2s)
It was depleted across almost 1sec of time.
(This is why the balls are released!!!)
Immediately after this, the strings begin to shorten and the angular
velocity of the balls begins to increase.
This is accelerated by the cylinders (now opposite) rotation.
This continues for almost 3 seconds.
Until the strings are again completely wrapped.
Why 1 sec to unwrap, and more than double that to wind back up?
And the impact occurs at (5.9s)
The second reversal of the cylinder has already occurred at this point
Almost half a second before impact.
This is an effect of the linear velocity we are intentionally ignoring.
If gravity were not able to take control, and there was no linear momentum
To deal with, the cylinder and balls would spin back and forth
The cylinder changing directions twice every oscillation of the balls.
Like an odd flying pendulum. Until all of the energy has dissipated.
Which in your inefficient system, would probably occur before the 4th
full oscillation.


  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #21 on: February 14, 2017, 07:34:03 AM »
They make these things for demonstrating physics labs
It's on a stick with a plastic knob you can spin with a pull string
The pull string is set just shy of one full rotation for the input.
This is meant for demonstrating momentum, not energy.
More importantly, it demonstrates how the momentum is
transferred between the two varying radii.
Via the attached points of the strings
The math is actually just like a pendulum
Or more accurately, like that of a kid on a swing that has
Enough balls to wrap the top post a few times.
Different kind of balls than the ones in your video.
But the momentum transfers just the same.
If the playground isn't bolted down a small child can
Tip it over like that.
Even though it weighs a lot more than the kid and has
Feet spaced for support.
The momentum of the kid is transferred into torque twisting
On the axis. Your "cylinder" in this case, is the upper beam
Holding the kid up. The entire playground, beam and all
Flip right over.

How did the kid build up so much momentum so quickly?
By wrapping the post with his swinging action, he shortened
The chains he was swinging on. Which caused him to move
Much faster.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #22 on: February 14, 2017, 10:57:03 AM »
This type of experiment was done by a student in Ohio.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #23 on: February 15, 2017, 02:55:35 AM »
I use several vertically mounted wheels that throw a single tethered mass. Two meters per second works just fine; that is why I chose it.

The sphere only stay 2 m/sec for a very brief period of time; it is soon 3 m/sec; and 7 ; and 20; and whoosh up it goes. Even in blaze orange you often never see them again.

What you see in the video is about 1/12 actual speed and with a low mass ratio 4.5 to 1. Most throws are much faster. 

Angular momentum does not work in the lab because there is no gravitation acceleration of the spheres; which is required for angular momentum conservation to be true.

Further more angular momentum conservation will give lower velocities for the spheres than energy. And energy conservation does not work because there is not enough linear momentum to return the original motion to the cylinder: which clearly happens.

I would like to see a picture of the playground equipment; sound like if you set that up in the U.S. you would be arrested.

The trouble with the playground equipment and the plastic knob stick thing; is that you are adding energy to the system. I can't envision either the knob or the playground thing, much like you can not envision a Atwood’s with a 25 kilogram string on one side. 

If 'much faster' (in the last sentence) means linear velocity; then that is not true, linear velocity can not change without the application of outside force.


  • Hero Member
  • *****
  • Posts: 3948
Re: re: energy producing experiments
« Reply #24 on: February 15, 2017, 08:54:46 AM »
In the U.S., what I was talking about is a normal playground
A-frames on the ends, an upper support bar, and swings hanging
from it.
I grew up in the 80's , these things were not bolted down back then.
Now we bolt the playgrounds to the ground or concrete the posts to
prevent this from occurring. (And other events that cause tipping)

I learned this the hard way, at a young age. Way before I understood
the physics that make it happen.

as far as your misconception concerning linear velocity of an object
That posses multiple vectored angular momentii......

My inertial propulsion research team got a big laugh out of your statement.

I am not even going to respond to it myself. I think I will let you stew on
That proposal for a moment.

Energy is always put into the system. The hand in your video inputs this energy.
In a controlled experiment, driven by a stepper motor, or even the rudimentary
pull-string- this energy is quantized. Meaning it holds an experimental 'value'
From which the data can be calculated.
Without knowing this value, you cannot perform energy conservation analysis.

If you did such analysis, you would probably go back and delete your posts.

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #25 on: February 15, 2017, 11:02:49 AM »
Does your propulsion team have any videos that shows energy being conserved and linear momentum being lost? Does linear momentum increase without the application of outside force; as you laughers propose? Please: I am shewing myself sick.

Of course energy is put in but not while the experiment is under way.


  • Hero Member
  • *****
  • Posts: 1842
Re: re: energy producing experiments
« Reply #26 on: February 15, 2017, 01:30:32 PM »
@Delburt or whatever your posting name was or is:

Like Kator01 I would like to know whether anything tangible (besides venting too many words and out of context numbers) happened during the last eight years in respect of useful experiments concerning your alleged tether energy production?

You will admit that the table top experiment from your video is at least inconclusive and very messy. Is that all you can do experiment wise?

May be I am wrong, but the biggest hurdle is that the tether experiment needs to be done in free fall (best in space).

There is the possibility that you do your experiments from a tower or high building (20 meters might be high enough). You mount a good high resolution camera on the ground over viewing the experiment  from bottom to top and you throw your gadget (which still seems to be the same from eight years ago) from the tower or high building. A mechanism to always spin the gadget consistently with the same speed at launch would also be good.

You can also throw the device from a bridge. Many bridges have an area underneath which is still land and not water (at the beginning or end of most bridges). In urban areas many bridges lead over land and not over water. You do not need extraordinary height, 10 to 20 meters would be plenty to make a short movie (definitely better than a table).

The best would be a free fall tower like this one , but for some initial experiments a high building or cliff would be good enough. The most important part of the experiment would be a launching mechanism, the camera and the high building or cliff or bridge are trivial.

Yes, this is harsh criticism, but your too many words and strange posting behavior (over eight years) pose serious questions and cause doubt. Nothing has ever been achieved with words and theoretical numbers, the experiment is the mother of all progress. First is the repeatable experiment and then come the words and numbers based on the experiment. That is how useful science is done since ages.

Greetings, Conrad
« Last Edit: February 15, 2017, 07:49:54 PM by conradelektro »

Delburt Phend

  • Full Member
  • ***
  • Posts: 223
Re: re: energy producing experiments
« Reply #27 on: February 15, 2017, 09:24:05 PM »
What I see is a perfectly excellent experiment; there is no why to add motion to the experiment after it is released and it is easy to see what motion it has by counting the frames for a crossing of the 20 mm square. And it comes back to that exact quantity of motion twice. And only linear momentum conservation can do that.
I don't even know why people refer to it as blurry: it is in motion what do you expect. It is a $200 camera not a $4,000 one. And the $4000 camera will give you no more information than the one you see. Because the end motion is four frames not 18 frames to cross the 20 mm. There is zero chance that energy is conserved. These experiments will be near the top of all physics experiments.

Conrade; Did you ever think that no experiment will ever make you happy; and you probably don't ever want to see one that actually proved energy can be made. What the experiment proves can not be any clearer; maybe it is you that refuses to see it.

Any motion experiment has to be a closed system. Once the experiment starts there can be no application of outside force. There can be no energy added; no momentum added; and none of your angular momentum added, it has to be a closed system to be an experiment. This rule disqualifies a person swinging something around on a string; and pulling the string in and out of a tube. It disqualifies the Ice skater. It disqualifies a child on an A frame swing. It disqualifies a person on a swivel chair pulling barbells in and out.

The cylinder and spheres qualifies as a closed system experiment because the first data point occurs after the fingers have released the spheres and cylinder. There is no data point that has anything to do with an outside force being applied. Just after release the fastest speed of 1.2 m/sec is recorded: and that same speed is recorded two other times. This experiment qualifies as a closed system.


  • Hero Member
  • *****
  • Posts: 898
Re: re: energy producing experiments
« Reply #28 on: February 16, 2017, 01:57:45 AM »
so what is the reason that this subject which was discussed in 15 pages 8 years ago
is brought again to the attention of the members here ?

Conrad if you wonder about the strange posting behaviour: maybe this here will help you to understand

and no, he can not afford to pay just one hour at ZARM: Only Prof. Szasz of Ungaria had the chance to perform his freee fall experiment here:

the whole issue does not make sense besides distracting attention by presenting old stuff again and
of course to cause traffic for obvious reasons...period



  • Hero Member
  • *****
  • Posts: 1842
Re: re: energy producing experiments
« Reply #29 on: February 16, 2017, 01:24:46 PM »
Only Prof. Szasz of Ungaria had the chance to perform his freee fall experiment here:

the whole issue does not make sense besides distracting attention by presenting old stuff again and
of course to cause traffic for obvious reasons...period


thank you for the link to the videos of Prof. Gyula I. Szász. He has his own website with many papers (as you might know). This is very interesting and I try to understand it.

Particle physics is driven by a handful of people who have access to a particle accelerator. And this is the experimental source for thousands of scientists who can never really understand and check what is done with the particle accelerators. The particle accelerators are because of theire enormous cost a political issue. They have to succeed because failure would be a catastrophe. Who can admit that one blew away billions and did useless experiments for decades? My unimportant and humble opinion: the particle accelerators are a terrible distraction and prohibit meaningful research of the microcosm. But who I am to judge that? I only know very little. I derive my opinion from the complexity of the technology used in particle accelerators. Everything is beyond the mensurable, it is a statistics wank. If you have trillions of measurements and you then do statistics long enough you will find something, specially if your career and your money supply depends on it.

Concerning our good man Delburt:

One never knows what motivates people to write endless and senseless rants in forums. Delburt's behaviour is very typical: no facts, no clear answers, deliberate obfuscation. He obviously does not want a meaningful dialogue and he has nothing tangible to show.

Greetings, Conrad