

A089946


Secondary diagonal of array A089944, in which the nth row is the nth binomial transform of the natural numbers.


7



1, 4, 24, 200, 2160, 28812, 458752, 8503056, 180000000, 4287177620, 113515167744, 3308603804376, 105288694411264, 3632897460937500, 135107988821114880, 5388090449900829728, 229385780960233586688, 10383890888434362036516, 498073600000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Also the hyperbinomial transform of A089945 (the main diagonal of A089944): a(n) = Sum_{k=0..n} C(n,k)*(nk+1)^(nk1)*A089945(k).
With offset 1, a(n) = total number of children of the root in all (n+1)^(n1) trees on {0,1,2,...,n} rooted at 0. For example, with edges directed away from the root, the trees on {0,1,2} are {0>1,0>2},{0>1>2},{0>2>1} and contain a total of a(2)=4 children of 0.  David Callan, Feb 01 2007
With offset 1, a(n) is the number of labeled rooted trees in all rooted forests on n nodes. The E.g.f. is B(T(x)) where B(x)=x*exp(x) and T(x) is Euler's tree function.  Geoffrey Critzer, Oct 07 2011


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..386
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420424.
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420424. (Annotated scanned copy)
F. A. Haight, Letter to N. J. A. Sloane, n.d.


FORMULA

a(n) = 2*(n+1) * (n+2)^(n1).
a(n) = Sum_{k=0..n} C(n, k) * (nk+1)^(nk1) * (2*k+1) * (k+1)^(k1).
E.g.f.: (LambertW(x)/x)^2 * (1  LambertW(x)) / (1 + LambertW(x)).


MATHEMATICA

t=Sum[n^(n1)x^n/n!, {n, 1, 20}]; Drop[Range[0, 20]!*CoefficientList[ Series[t*Exp[t], {x, 0, 20}], x], 1] (* Geoffrey Critzer, Oct 07 2011 *)
Table[2*(n+1)*(n+2)^(n1), {n, 0, 50}] (* G. C. Greubel, Nov 14 2017 *)


PROG

(PARI) a(n)=if(n<0, 0, 2*(n+1)*(n+2)^(n1));
(MAGMA) [2*(n+1) * (n+2)^(n1): n in [0..50]]; // G. C. Greubel, Nov 14 2017


CROSSREFS

Cf. A089944, A089945.
A diagonal of A259334.
Sequence in context: A136229 A138419 A341727 * A343094 A012244 A342168
Adjacent sequences: A089943 A089944 A089945 * A089947 A089948 A089949


KEYWORD

nonn


AUTHOR

Paul D. Hanna, Nov 23 2003


STATUS

approved



