Cookies help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
http://www.overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please leave this website now. Many thanks for your understanding.
Amazon Warehouse Deals ! Now even more Deep Discounts ! Check out these great prices on slightly used or just opened once only items.I always buy my gadgets via these great Warehouse deals ! Highly recommended ! Many thanks for supporting OverUnity.com this way.

New Book

Statistics

• Total Members: 82252
• Latest: Volterp

• Total Posts: 496581
• Total Topics: 14615
• Online Today: 44
• Most Online: 103
(December 19, 2006, 11:27:19 PM)
• Users: 7
• Guests: 241
• Total: 248

Author Topic: Pulling energy from the ambient energy field using a coil capacitor  (Read 43084 times)

sm0ky2

• Hero Member
• Posts: 2851
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #195 on: January 10, 2018, 02:03:20 PM »
The energy density of the earths electric field most of our altitudes

Is ~13w/m^2
Which is coincidentally less than the field of the human body at close distance

The coil capacitor would have to have a very large surface area.
and should not touch it, you can charge it with your body on accident

Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #195 on: January 10, 2018, 02:03:20 PM »

itsu

• Hero Member
• Posts: 1460
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #196 on: January 10, 2018, 02:40:12 PM »
sm0ky2,

so what you are saying is that for the name of this thread "Pulling energy from the ambient energy field using a coil capacitor" to be thru,
we need a very large surface area, like  ~1m² for pulling 13w of energy, right?

Would that large surface area be the total coil area, or only the area where both bifilar coils (almost) touch?

Established mainstream physicists Dr John Wheeler and Dr Richard Feynman calculated that the amount of zero-point energy in the space volume of a single light bulb is powerful enough to bring all the world’s oceans to the boiling point!

http://aetherforce.com/kozyrev-aether-time-and-torsion/

Itsu

itsu

• Hero Member
• Posts: 1460
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #197 on: January 10, 2018, 05:03:30 PM »
In an attempt to explain the low resonance frequency (285KHz) of the two bifilar interwound coil pairs (each separate resonance frequencies at 3.5Mhz)
i treated this bifilar coil pair as being a series arrangement of a coil (130uH), a capacitor (2.3nF) and again a coil (130uH), see picture.

The both coils in series would yield a total series inductance of 260uH (130 + 130) and using this resonant calculator  http://www.1728.org/resfreq.htm
i calculated the series resonant frequency to be 206KHz, which is not close.

Using instead the inductance of a single coil (130uH) it calculates the resonance frequency to be 290Khz which is smack on.
So it seems that these bifilar coil pairs behave like a series LC circuit of 1 coil and 1 cap (or perhaps 2 of those series LC circuits, but overlapping).

I created a coil system like the lower part in the picture by winding  2 separate coils (10m wire / 63 turns each) split by a 3nF capacitor, but this
series LC circuit strongly keeps on resonating at 2.37Mhz which is the resonance frequency of the separate coils.

So the bifilar coil pairs do not behave like a normal series circuit of a coil, a cap and a coil.

Itsu

sm0ky2

• Hero Member
• Posts: 2851
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #198 on: January 12, 2018, 04:34:48 AM »

Established mainstream physicists Dr John Wheeler and Dr Richard Feynman calculated that the amount of zero-point energy in the space volume of a single light bulb is powerful enough to bring all the world’s oceans to the boiling point!

http://aetherforce.com/kozyrev-aether-time-and-torsion/

Itsu

To that statement, I would raise a suspicious eyebrow.
First, Wheeler was the professor, Feynman his student.
It would be unlikely that they both are accredited for such
calculations.
Furthermore, I say show me the equations.

If they were likely to even exist, they would’ve readily available
to the thousands of physicists searching for ZPE.

My personal calculations show the energy to be very small:
orders of magnitude smaller than the Earths ambient electric field
I mentioned above.

TinselKoala

• Hero Member
• Posts: 13634
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #199 on: January 12, 2018, 08:56:06 AM »

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.4857

You may also like to look at the work of Julian Schwinger, who shared the 1965 Nobel Prize with Richard Feynman.

Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #199 on: January 12, 2018, 08:56:06 AM »

AlienGrey

• Hero Member
• Posts: 1644
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #200 on: January 12, 2018, 10:07:45 AM »
Mr Tinsel many of us are aware of dark energy, hyperspace, and latitudinal punch {faster than light technology}if you can call it a wave Tesla patented the phenomena over 100 years ago with his boat demonstration, it was Oxford university and Marconi who bastardized (a Donald Smith term) the situation, the issue and problem here is collection technology!

Any ideas to sling in the pot other than 30 to 100 foot back garden poles  ?

Allen

Belfior

• Full Member
• Posts: 206
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #201 on: January 12, 2018, 10:51:34 AM »
In an attempt to explain the low resonance frequency (285KHz) of the two bifilar interwound coil pairs (each separate resonance frequencies at 3.5Mhz)
i treated this bifilar coil pair as being a series arrangement of a coil (130uH), a capacitor (2.3nF) and again a coil (130uH), see picture.

The both coils in series would yield a total series inductance of 260uH (130 + 130) and using this resonant calculator  http://www.1728.org/resfreq.htm
i calculated the series resonant frequency to be 206KHz, which is not close.

Using instead the inductance of a single coil (130uH) it calculates the resonance frequency to be 290Khz which is smack on.
So it seems that these bifilar coil pairs behave like a series LC circuit of 1 coil and 1 cap (or perhaps 2 of those series LC circuits, but overlapping).

I created a coil system like the lower part in the picture by winding  2 separate coils (10m wire / 63 turns each) split by a 3nF capacitor, but this
series LC circuit strongly keeps on resonating at 2.37Mhz which is the resonance frequency of the separate coils.

So the bifilar coil pairs do not behave like a normal series circuit of a coil, a cap and a coil.

Itsu

This is very interesting. This means they will tune together and you get the bonus of the lower freq

Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #201 on: January 12, 2018, 10:51:34 AM »

Belfior

• Full Member
• Posts: 206
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #202 on: January 12, 2018, 10:54:44 AM »

To that statement, I would raise a suspicious eyebrow.
First, Wheeler was the professor, Feynman his student.
It would be unlikely that they both are accredited for such
calculations.
Furthermore, I say show me the equations.

If they were likely to even exist, they would’ve readily available
to the thousands of physicists searching for ZPE.

My personal calculations show the energy to be very small:
orders of magnitude smaller than the Earths ambient electric field
I mentioned above.

Wheeler and Misner

http://www.cheniere.org/images/geometrodynamicsP129a.jpg

J. A. Wheeler and C. Misner, Geometrodynamics, Academic Press, New York, 1962.

Jeg

• Hero Member
• Posts: 1110
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #203 on: January 12, 2018, 12:16:09 PM »
The both coils in series would yield a total series inductance of 260uH (130 + 130) and using this resonant calculator  http://www.1728.org/resfreq.htm
i calculated the series resonant frequency to be 206KHz, which is not close.

Hi Itsu, hope you are fine

Coils themselves also possess some inter-turn capacity which might also be in series with your measured 2.1nF. This probably takes down the total capacity close to 1.2nF.

regards

AlienGrey

• Hero Member
• Posts: 1644
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #204 on: January 12, 2018, 12:21:09 PM »
Work your way through this one

Astroturfing

Astroturfing is the practice of masking the sponsors of a message or organization (e.g., political, advertising, religious or public relations) to make it appear as though it originates from and is supported by a grassroots participant(s). It is a practice intended to give the statements or organizations credibility by withholding information about the source's financial connection. The term astroturfing is derived from AstroTurf, a brand of synthetic carpeting designed to resemble natural grass, as a play on the word "grassroots." The implication behind the use of the term is that instead of a "true" or "natural" grassroots effort behind the activity in question, there is a "fake" or "artificial" appearance of support.

Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #204 on: January 12, 2018, 12:21:09 PM »

itsu

• Hero Member
• Posts: 1460
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #205 on: January 12, 2018, 02:19:22 PM »
Hi Itsu, hope you are fine

Coils themselves also possess some inter-turn capacity which might also be in series with your measured 2.1nF. This probably takes down the total capacity close to 1.2nF.

regards

Hi Jeg,

i am fine thanks,  hope you are too.

Yes, you are right, but i calculated the inter-turn capacity of my coils by using the same resonance calculator and using the self resonance frequency (3.5Mhz) of the coil and
the measured inductance (130uH) as to be only 16pF.

So i don't think that will influence the result to much.

Regards itsu

sm0ky2

• Hero Member
• Posts: 2851
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #206 on: January 12, 2018, 02:53:32 PM »

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.4857

You may also like to look at the work of Julian Schwinger, who shared the 1965 Nobel Prize with Richard Feynman.

I am by no means minimizing the man's contributions to quantum dynamics.
The equations that govern the quantum fluctuations, the Casmir effect, and other
particle phenomena, deal with a cosmological unit of measurement that is relatively
infinitesimal, compared to our human condition.

Hmm..... allow me to put this in another way.

The unit is measurably one trillionth of an Erg per cubic centimeter.
One Erg is 1 x (10^-7) Joule.

Hardly enough in a coffee cup to boil the water in a coffee cup.
Much less "all the oceans in the world"

I would like to see the alleged equations that lead to this conclusion.

Jack Noskills

• Sr. Member
• Posts: 333
Re: Pulling energy from the ambient energy field using a coil capacitor
« Reply #207 on: February 21, 2018, 08:56:23 AM »

I haven’t been able to follow since my previous post in the beginning of January so some parts of this post could be outdated. Hitting send anyway, need to catch up next.[/size]

I setup my coil system as shown in the Fig. 6 in the PDF, not sure if that is needed, but the
‘Signal generator testing guidelines’ section in the pdf, where i am now, says so, see the picture below of this setup.

Using UF4007 diodes and a 230V GDT.

Not sure where to attach the FG, so i loosly coupled it in on the inside of the tube.

Screenshot shows the FG pulse in blue and the response of the load (across the GDT) in yellow (load is only the scope pobe).
The ringing downs (one at start of the pulse, one at the end of the pulse) show a 208KHz ringing frequency, so no where near
the measured 3.5Mhz resonance frequency of the seperate coils.

Need input from Jack if i am on the right track.......

Itsu
[size=78%] [/size]
It took a while for me to understand what was the confusion about. My referring to figs 6 and 7 was a mistake in the pdf, should have been clearer. What was meant was to use the diode or spark connection using one coil capacitor system. The figures 6 and 7 were from a test case where I used two separate coil sets on two coil formers instead of one. Then after 8 months I wrote the SG section and was careless. Very sorry about that. So use just one coil capacitor system for pulsing, second for energy collecting and then use blocking diodes and safety spark gap. Charge collecting capacitor should work with any metal object as ground but haven’t tested this.

Now trying to answer questions and hopefully clearing all remaining issues. Deliberately over explaining to avoid further misunderstandings.

Coil capacitor uses the Coulomb effect between charged bodies which is maximized when distance between bodies is minimized. So always make as tight coils as possible. Coil capacitor is also more effective the more it has charge on it. A primary with more turns is better since it creates stronger magnetic pulse than primary having less turns. Same from Coulomb’s law: U = constant * Q * Q / (distance*distance). Electric field potential U is maximized when charge Q in the charged bodies is increased or distance between charged bodies is minimized.

I try to explain resonant rise (or voltage amplitude rise) how I think it happens in this system. Consider a coil capacitor system having 10 MHz resonant frequency f (100ns cycle time) and it is pulsed using a 50 ns pulse. Suppose single pulse creates one ringdown that lasts 1000 cycles. When next pulse occurs after 2000 cycles the result is two separate ringdowns and no resonant rise. If second pulse is given after 500 cycles then ringdowns overlap and they add up resulting in resonant rise. The frequency of the pulses that can cause resonant rise can be computed from f/n where n > 0 and n is integer. In this case n can have values 1,2,3,… 1000. I used 25% cycle time in the pdf and realized now that it is wrong.

About pulsing using coil capacitor. FG is connected to beginning of red wire and to end of black wire. When coil capacitor is being charged by the pulse current goes CW in the red wire. Charge that appears in the black wire will also go CW when it comes out. So result is 126 turns going CW creating a magnetic pulse. Coil capacitor limits the pulse length and current may drop to zero before 50% of the cycle is complete. When the drive pulse goes down then coil capacitor discharges immediately giving a push to other direction so timing will be correct. This was seen in the scope shots (purple pulse, links below) as two voltage spikes that occurred at precisely correct time instants.

-------------
Possible experiments

There are two ways to create a current pulse using a coil capacitor as primary. Capacitor is first fully charged and then discharged, or capacitor is discharged while it is still being charged (current reversal method). Which method creates stronger current pulse ? Easiest way to increase charging time is to add capacitor between the open ends of the primary (this should work and is easier than to add turns). Current reversal method should also return back more charge than what was pushed in. This should be visible in the scope: area under the return current pulse is greater than the area under the incoming current pulse. Return current pulse is greater when current flow is stopped while it still has high amperage in it. What if the reversal current is also interrupted before completion ? Back spike runaway if pulse occurs every cycle or stronger pulses if pulse occurs less frequently ? Maybe unsafe, don’t know but better be aware of this possibility.

Adding ferrite core should increase the strength of the magnetic pulse resulting in greater ringdown. Resonant frequency should not be affected by ferrite core. With ferrite magnetic pulse could be hundreds of times stronger so adding capacitance should be done gradually. For example: 1nf, 2nf, 4nf, 8nf, 16nf, etc. Current pulse creates the ringdown and therefore it would be good to see it.

After these tests we will know the optimum pulsing system and method. If capacitor charging happens twice per cycle then we can move on and try stronger pulses. FG driven MOSFET is the simplest option I can think of. Start from the same voltage as the FG and slowly increase the charging current only and monitor changes. This is the most dangerous part. If the coil wire resistance affects to current of the pulse then voltage can be increased. Coil capacitor pulses are fast so I don’t see that sparks are necessary to create pulses. Stronger push means faster capacitor charging and it needs to be taken into account if pulsing uses the current reversal method. Putting a capacitor in the primary should fix this problem easily. Consider also this: it requires 628 kV to push 100 mA of current through a coil having 100mH inductance at 10 MHz. When inductance is zero it requires only 1.5V to push 1A through the same system if resistance is 1.5 ohms. What this can do to a ferrite core, can it cause unhealthy side effects ? Gamma meter could be handy to have around. Don talked about gamma flux which is created by electric field that can be measured with a gamma meter. What if ferrite turns gamma flux into a gamma ray when MHz gets pushed through it ? Compressed stream of energy does not sound healthy to me.

Attached is the simplest oscillator I could find and explanation how I think it should work. It is not complete and there are some questions in the pdf. If this could be used to create pulses then it would be only a bit more complex than a joule thief. There is also updated SG testing guidelines with errors fixed.

How to verify if resistance of coil affects to coil capacitor charging current ?
-------------

The three scope shots from itsu on page 13 showed why 50% turn offset coil is better. It has about three times higher resonant frequency and it also has greater ringdown. The fast purple pulse was also interesting as it showed the coil capacitor charge and discharge cycle: http://overunity.com/17119/pulling-energy-from-the-ambient-energy-field-using-a-coil-capacitor/msg514986/#msg514986

Inductance L is zero which makes impedance 2pi*f*L also zero that is for sure (should have called it inductive reactance but forgot to use that term). Capacitive reactance 1/(2pi*f*C) approaches zero when f and C is increased. With 10Mhz and 100nf impedance is 0.16 ohms, not too far from zero. Just look how sharp the pulse is and without any ripple. Pulse rise time below 10ns and pulse fall time (from 1V to -3V) also below 10ns. This gives two sharp edges per pulse instead of one. A perfect pulse that can happen every cycle even at 100 MHz. Power is not drawn from FG as it is only pumping charge through a capacitor. The 8.93Mhz pulse was interrupted before coil capacitor was fully charged. The 3.91MHz pulse was able to fully charge the 2.3nF capacitance of the primary coil capacitor:
http://overunity.com/17119/pulling-energy-from-the-ambient-energy-field-using-a-coil-capacitor/msg514973/#msg514973

The blue input pulse was slow, weak and full of ripple compared to the purple pulse of the coil capacitor:
http://overunity.com/17119/pulling-energy-from-the-ambient-energy-field-using-a-coil-capacitor/msg515020/#msg515020

Rise time lasted around 15 microseconds and fall time was also slow. This pulse is good only up to 100 kHz. Faster frequency weakens the pulse strength because of inductance so it does not give greater ringdown. Pulse is weakened also if ferrite core is used or more turns are added because inductance is increased which increases impedance. Blue pulse had no effect to output while current in it had reached maximum value, it only consumed charge from the source. But there must be current present until 50% of the cycle time has passed otherwise there will be falling edge and reverse pulse occurs too early.