Stack 20 dominoes on top of each other on their sides. Hold the second domino from the bottom and slide out the bottom domino. Place the removed domino on the top of the stack.

We now have the starting position; of 20 dominoes that are at a distance of one domino width from the table. We can lower the stack of twenty dominoes by one domino width so that the stack again rests on the table. We can remove the bottom domino again; and place it on the top of the stack. So by raising one domino twenty domino widths we can continually restore the original configuration. (This is quite a trick with twenty; but works easily with six)

All the one kilogram masses in the chain drop one meter; but only one needs to be raised 20 meters to restore the driving chain (stack) to its original configuration. It takes a whole lot less momentum to raise one kg twenty meters than to raise 20 kg one meter. It takes 19.81 (19.81 m/sec * 1 kg) units of momentum to raise one kilogram 20 meters: and 88.59 (4.429 m/sec * 20 kg) units of momentum to raise 20 kilograms one meter. 19.81 / 88.59 = 22.36%

You are actually using 19.81 units of momentum to make 88.59. The momentum increase is 88.59 / 19.81 447%. When you transfer all the motion of the 88.59 units of momentum to one kilogram you get (½ * 1 kg * 88.59 m/sec * 88.59 m/sec) 3924 joules of energy: for an energy increase from 196.2 J to 3924 joules; 2,000%.

If you attach the chain to a 80 kilogram flywheel you are then using 19.81 units of momentum to make 198.1.