Cookies-law

Cookies help us to bring you our services at overunity.com . If you use this website and our services you declare yourself okay with using cookies .More Infos here:
http://www.overunity.com/5553/privacy-policy/
If you do not agree with storing cookies, please leave this website now. Many thanks for your understanding.
Amazon Warehouse Deals ! Now even more Deep Discounts ! Check out these great prices on slightly used or just opened once only items.I always buy my gadgets via these great Warehouse deals ! Highly recommended ! Many thanks for supporting OverUnity.com this way.

FireMatch

FireMatch

CCKnife

CCKnife

Poplamp

poplamp

CCTool

CCTool

LEDTVforSale

Magpi Magazine

Magpi Magazine Free Rasberry Pi Magazine

Battery Recondition

Battery Recondition

OverUnity Book

overunity principles book

Arduino

Ultracaps

YT Subscribe

Gravity Machines

Tesla-Ebook

Magnet Secrets

Lindemann Video

Navigation

Products

Statistics


  • *Total Posts: 493097
  • *Total Topics: 14500
  • *Online Today: 44
  • *Most Online: 103
(December 19, 2006, 11:27:19 PM)
  • *Users: 7
  • *Guests: 67
  • *Total: 74

Facebook

Author Topic: Submersible Engine Design  (Read 18632 times)

Offline DreamThinkBuild

  • Hero Member
  • *****
  • Posts: 566
Re: Submersible Engine Design
« Reply #15 on: January 16, 2011, 01:44:22 AM »
Hi Tommey,

Great work.

Just a idea. I think a torpedo shaped collector would be better than the cans bowed bottoms. Maybe plastic or glass test tubes?

Free Energy | searching for free energy and discussing free energy

Re: Submersible Engine Design
« Reply #15 on: January 16, 2011, 01:44:22 AM »

Offline TommeyLReed

  • Sr. Member
  • ****
  • Posts: 456
Re: Submersible Engine Design
« Reply #16 on: January 16, 2011, 01:58:00 AM »
Yes you're right, this is just a prototype at a very low cost to me.
Less then 40$ to prove a theory sounds great to me, what do you think?

This is another test I just did with a smaller hose to feed air into the cans.
http://www.youtube.com/watch?v=T-nSIZJ61wI

Tom

Free Energy | searching for free energy and discussing free energy


Offline powercat

  • Hero Member
  • *****
  • Posts: 1091
Re: Submersible Engine Design
« Reply #17 on: January 16, 2011, 01:52:47 PM »
If a hydrogen cell was used to make the bubbles, then when all the lifting was done, you could still burn the hydrogen, though how well the hydrogen cell works under pressure I don't know.
just a thought

Offline exnihiloest

  • Hero Member
  • *****
  • Posts: 716
Re: Submersible Engine Design
« Reply #18 on: January 16, 2011, 05:36:28 PM »
...
how well the hydrogen cell works under pressure I don't know.
just a thought

It is a known phenomenon. The hydrogen pops out in bubles along the electrode only when it can overcome the ambiant pressure. The more the external pressure, the more the electrical energy needed for the electrolysis.




Offline powercat

  • Hero Member
  • *****
  • Posts: 1091
Re: Submersible Engine Design
« Reply #19 on: January 16, 2011, 07:13:59 PM »
It is a known phenomenon. The hydrogen pops out in bubles along the electrode only when it can overcome the ambiant pressure. The more the external pressure, the more the electrical energy needed for the electrolysis.

Thanks exnihiloest
oh well another thought bites the dust.

Free Energy | searching for free energy and discussing free energy

Re: Submersible Engine Design
« Reply #19 on: January 16, 2011, 07:13:59 PM »
Sponsored links:




Offline Sprocket

  • Sr. Member
  • ****
  • Posts: 411
Re: Submersible Engine Design
« Reply #20 on: January 17, 2011, 01:20:34 AM »
It is a known phenomenon. The hydrogen pops out in bubles along the electrode only when it can overcome the ambiant pressure. The more the external pressure, the more the electrical energy needed for the electrolysis.

Does that mean that hydrogen cells in a partial vacuum would have a much higher output?

Furthermore, since hydrogen would have an obvious buoyancy-advantage, why not use a vacuum pump to suck the air & hydrogen out, feeding it either directly to another compression tank to increase pressure, or maybe straight to the submersible pump itself would do.  And as  powercat said, you could then also use the hydrogen to produce energy - maybe help run the vacuum pump!

Offline exnihiloest

  • Hero Member
  • *****
  • Posts: 716
Re: Submersible Engine Design
« Reply #21 on: January 17, 2011, 02:22:57 PM »
Does that mean that hydrogen cells in a partial vacuum would have a much higher output?
...

Of course, it is the corollary.


Hydrogen is lighter than air but both have a quite similar density when compared to water (air density is about 1/900th that of water at atmospheric pressure). So in water the buoyancy advantage of hydrogen over air is very very weak.

In any case, I don't see the interest of more and more complicated setup when the functioning is conventional and can be described by a hamiltonian which implies energy conservation.
Either a system is supposed to work according to the physics laws, and here it seems to me that it is the case, thus extra-energy can't be produced without a hidden source that would have to be specified, or there are new laws of physics (but why and which?) or there is a flaw in the laws or equations of mechanics, that however have been proved relevant and internally consistent for more than two centuries.


Free Energy | searching for free energy and discussing free energy

Re: Submersible Engine Design
« Reply #21 on: January 17, 2011, 02:22:57 PM »
Sponsored links:




Offline TommeyLReed

  • Sr. Member
  • ****
  • Posts: 456
Re: Submersible Engine Design
« Reply #22 on: January 18, 2011, 03:28:33 AM »
Lets start over again.

12^3=1729 cu/in
7.48 gal = 1728 cu/in
7.48*8.33=62.3 lb.
I forgot that the deeper you go, it will also increase upward force?
So really each cube at a deeper depth would have different force?
I'm trying to find the basic formulas to test each cube at 1ft,2ft,3ft,,,,,,10ft depth.
This would also mean less volume at a depth of 10ft, because as the cube rise the pressure make more displacement as it rise to the top.
This sound simple, but many factor to think about.

Archimedes' principle

A system consists of a well-sealed object of mass m and volume V which is fully submerged in a uniform fluid body of density ρf and in an environment of a uniform gravitational field g. Under the forces of buoyancy and gravity alone, the "dynamic buoyant force" B acting on the object and its upward acceleration a are given by:


Buoyant force
B=2gmpfV/m+pfV

Upward acceleration
a=g(pfV-m)/m+pfV


Tom



Offline TommeyLReed

  • Sr. Member
  • ****
  • Posts: 456
Re: Submersible Engine Design
« Reply #23 on: January 18, 2011, 12:14:10 PM »
This submersible engine goes beyond Archimedes' Principle: 

Archimedes' principle is a fluid statics concept. In its simple form, it applies when the object is not accelerating relative to the fluid. To examine the case when the object is accelerated by buoyancy and gravity, the fact that the displaced fluid itself has inertia as well must be considered.[5]

This means that both the buoyant object and a parcel of fluid (equal in volume to the object) will experience the same magnitude of buoyant force because of Newton's third law, and will experience the same acceleration, but in opposite directions, since the total volume of the system is unchanged. In each case, the difference between magnitudes of the buoyant force and the force of gravity is the net force, and when divided by the relevant mass, it will yield the respective acceleration through Newton's second law. All acceleration measures are relative to the reference frame of the undisturbed background fluid.

Atwood's machine analogy
Atwood's Machine Analogy for dynamics of buoyant objects in vertical motion. The displaced parcel of fluid is indicated as the dark blue rectangle, and the buoyant solid object is indicated as the gray object. The acceleration vectors (a) in this visual depict a positively buoyant object which naturally accelerates upward, and upward acceleration of the object is our sign convention.The system can be understood by analogy with a suitable modification of Atwood's machine, to represent the mechanical coupling of the displaced fluid and the buoyant object, as shown in the diagram right.

The solid object is represented by the gray object
The fluid being displaced is represented by dark blue object
Undisturbed background fluid is analogous to the inextensible massless cord
The force of buoyancy is analogous to the tension in the cord
The solid floor of the body of fluid is analogous to the pulley, and reverses the direction of the buoyancy force, such that both the solid object and the displaced fluid experience their buoyancy force upward.
[edit] ResultsIt is important to note that this simplification of the situation completely ignores drag and viscosity, both of which come in to play to a greater extent as speed increases, when considering the dynamics of buoyant objects. The following simple formulation makes the assumption of slow speeds such that drag and viscosity are not significant. It is difficult to carry out such an experiment in practice with speeds close to zero, but if measurements of acceleration are made as quickly as possible after release from rest, the equations below give a good approximation to the acceleration and the buoyancy force.

A system consists of a well-sealed object of mass m and volume V which is fully submerged in a uniform fluid body of density ρf and in an environment of a uniform gravitational field g. Under the forces of buoyancy and gravity alone, the "dynamic buoyant force" B acting on the object and its upward acceleration a are given by:

Buoyant force

Upward acceleration

Derivations of both of these equations originates from constructing a system of equations by means of Newton's second law for both the solid object and the displaced parcel of fluid. An equation for upward acceleration of the object is constructed by dividing the net force on the object (B − mg) by its mass m. Due to the mechanical coupling, the object's upward acceleration is equal in magnitude to the downward acceleration of the displaced fluid, an equation constructed by dividing the net force on the displaced fluid (B − ρfVg) by its mass ρfV.

Should other forces come in to play in a different situation (such as spring forces, human forces, thrust, drag, or lift), it is necessary for the solver of problem to re-consider the construction of Newton's second law and the mechanical coupling conditions for both bodies, now involving these other forces. In many situations turbulence will introduce other forces that are much more complex to calculate.

In the case of neutral buoyancy, m is equal to ρfV. Thus B reduces to mg and the acceleration is zero. If the object is much denser than the fluid, then B approaches zero and the object's upward acceleration is approximately −g, i.e. it is accelerated downward due to gravity as if the fluid were not present. Similarly, if the fluid is much denser than the object, then B approaches 2mg and the upward acceleration is approximately g.

Tommey Reed

 

Share this topic to your favourite Social and Bookmark site

Please SHARE this topic at: